Position:Home >> Abstract

Effects of salt concentration on rejection of nanofiltration membrane in the low concentration range
Authors: JIANG Di, XU Yifeng, LU Guotai, YANG Gang, XING Weihong
Units: State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China
KeyWords: nanofiltration; rejection; membrane charge density; the dielectric constant; model
year,volume(issue):pagination: 2017,37(1):64-68

 Salt solutions(KCl, NaCl, Na2SO4, K2SO4, MgCl2) were filtrated with a commercially available DK nanofiltration membrane to evaluate effects of concentration and type of salt in the feed side on the membrane performance, The concentration of them was in the range from 1 to 50 mol/m3. The Donnan steric pore and dielectric exclusion(DSPM-DE) model and DSPM model was applied to calculate Volumetric membrane charge values, dielectric constant, and pore radius, to analyze the relationship between the parameters and rejection of salt. In the low concentration range, The results showed that the rejection of Na2SO4 and K2SO4 showed the same changing rule as the KCl and NaCl, the membrane charge density(|Xd|) increased when the concentration of salt solutions increased, the rejection decreased duo to charge screening. The rejection of MgCl2 increased with increasing of the concentration. the |Xd| of salt solution decreased first and then increased, duo to special combination of Mg2+ with carboxyl, The electrostatic repulsion and the dielectric exclusion influenced the rejection of MgCl2 together.


第一作者简介:姜迪(1989—),男,河南夏邑人,硕士生,主要研究方向为膜分离;通讯作者,E-mail: yanggang@ njtech.edu.cn.

 [1] Labbez C, Fievet P. Retention of mineral salts by a polyamide nano?ltration membrane[J]. Separation and Puri?cation Technology, 2003, 30:47-55.
[2] Mazzoni C, Bandini S. On nano?ltration Desal-5 DK performances with calcium chloride–water solutions[J]. Separation and Puri?cation Technology, 2006, 52:232-240.
[3] Mazzoni C, Bruni L, Bandini S. Nanofiltration: Role of the Electrolyte and pH on Desal DK Performances[J]. industrial & engineering chemistry research, 2007, 46: 224-2262.
[4] Bowen W R, Welfoot J S, Williams P M. Linearized Transport Model for Nanofiltration: Development and Assessment[J]. AIChE Journal, 2002, 48: 760-773.
[5] Deon S, Escoda A, Fievet P. A transport model considering charge adsorption inside pores to describesalts rejection by nano?ltration membranes[J]. Chemical Engineering Science, 2011, 66: 2823-2832.
[6] 戚茂飞, 武海洋, 刘文强等. CaCl2对葡萄糖纳滤截留率的影响[J]. 南京工业大学学报:自然科学版, 2011, 33(4): 103-106.
[7] Schaep J, Vandecasteele C, WMohammad A W. Modelling the retention of ionic components for different nano?ltration membranes[J]. Separation and Puri?cation Technology, 2001, 22(3): 169-179.
[8] Hsich F H, Matsutura T, Souriajan S. Reverse osmosis separations of polyethylene glycols in dilute aqueous solutions using porous cellulose acetate membranes[J]. Journal of Applied Polymer Science, 1979, 23(2): 561-573.
[9] Nakao S., Kimura S. Analysis of solutes rejection in ultrafiltration[J]. Journal of Chemical Engineering of Japan, 1981, 14(1): 32-37.
[10] Bowen W. R., Mukhtar H. Characterization and prediction of separation performance of Nanofiltration membranes[J]. Journal of Membrane Science, 1996, 112(2): 263~274.
[11] Mohammada A W, Hilal N, Darwish N A. Prediction of permeate fluxes and rejections of highly concentrated salts in nanofiltration membranes[J]. Journal of Membrane Science, 2007, 289(1-2): 40-50.
[12] Koga Y, Katayanagi H, Davies J V, et al. The effects of chloride salts of some cations on the molecular organization of H2O: towards understanding the hofmeister series[J]. The Chemical Society of Japan, 2006, 79:1347-1354.
[13] Zhang Y J, Cremer P S. Interactions between macromolecules and ions: the Hofmeister series[J]. Current Opinion in Chemical Biology, 2006, 10:658-663.
[14] Bargeman G, Westerink J B, Miguez O G, et al. The effect of NaCl and glucose concentration on retentions for nano?ltration membranes processing concentrated solutions[J]. Separation and Puri?cation Technology, 2014, 134:46-57.


《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com