Position:Home >> Abstract

Analysis and Prediction of Membrane Fouling in Water Treatment Based on the Approach of the XDLVO Theory
Authors: Kou Chaowei1, Zhang Ganwei1,2,3, Shen Shusui, Zhou Xiaoji, Yang Jingjing, Bai Renbi
Units: 1. Center for Separation and Purification Materials & Technologies, Suzhou University of Science and Technology, Suzhou 215009, China; 2. Suzhou Key Laboratory of Separation and Purification Materials & Technologies, Suzhou 215009, China; 3. Jiangsu Collabrative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China
KeyWords: XDLVO theory; membrane fouling; water treatment; analysis and prediction
year,volume(issue):pagination: 2017,37(1):8-15

 The XDLVO theory can be used to quantitatively assess the nature and extent of interfacial interactions between two materials, which is beneficial to provide a better understanding in the complex membrane fouling phenomena of membrane processes in water treatment and thus provide possible directions in the approach of more effectively avoiding or solving the membrane fouling issue. This study examined the relevant theoretical analysis in the surface interaction free energy between membranes and pollutants reported in the literature in recent years, and, on the basis of available data, carried out calculation and statistical analysis. The results lead to a useful summary table showing the possible sequence or trend in membrane fouling for different types of membrane materials and pollutants in membrane water treatment applications. The study further discussed the effect of solution conditions on membrane fouling for membrane water treatment processes. Finally, the paper looked at some of the shortcomings in the membrane fouling study in the current practices and the prospect of utilizing the XDLVO theory for membrane fouling analysis and prediction for membrane water treatment.

国家自然科学基金项目(51478282); 苏州市科学技术局项目 (SZS201512) ;苏州科技大学校科研基金项目(XKQ201502)

第一作者简介:寇朝卫(1989 -),男,硕士研究生,研究方向为水处理膜分离技术。 * 通讯作者:电子邮件:ceebairb@live.com

 [1]  Baker R W. Membrane technology[M]. California: John Wiley & Sons, Inc., 2000.  
[2]  Shannon M A, Bohn P W, Elimelech M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185): 301-310.
[3]  Tang C Y, Chong T H,Fane A G. Colloidal interactions and fouling of NF and RO membranes: a review[J]. Adv Colloid Interface Sci, 2011, 164(1-2): 126-43.
[4]  Tran T, Bolto B, Gray S, et al. An autopsy study of a fouled reverse osmosis membrane element used in a brackish water treatment plant[J]. Water Res, 2007, 41(17): 3915-3923.
[5]  Zhu X, Loo H-E,Bai R. A novel membrane showing both hydrophilic and oleophobic surface properties and its non-fouling performances for potential water treatment applications[J]. J Memb Sci, 2013, 436(2): 47-56.
[6]  Her N, Amy G, Plottu-Pecheux A, et al. Identification of nanofiltration membrane foulants[J]. Water Res, 2007, 41(17): 3936-3947.
[7]  Zhu X, Tu W, Wee K H, et al. Effective and low fouling oil/water separation by a novel hollow fiber membrane with both hydrophilic and oleophobic surface properties[J]. J Memb Sci, 2014, 466(466): 36-44.
[8]  Chang I-S, Le Clech P, Jefferson B, et al. Membrane fouling in membrane bioreactors for wastewater treatment[J]. J Environ Eng, 2002, 128(11): 1018-1029.
[9]  田禹, 李志能, 陈琳. 正常污泥和膨胀污泥中EPS膜污染特性及其与膜表面作用能分析[J]. 环境科学学报, 2013, 33(5): 1224-1230. 
[10]  Chang H, Qu F, Liu B, et al. Hydraulic irreversibility of ultrafiltration membrane fouling by humic acid: Effects of membrane properties and backwash water composition[J]. J Memb Sci, 2015, 493: 723-733.
[11]  Cheng X, Liang H, Ding A, et al. Effects of pre-ozonation on the ultrafiltration of different natural organic matter (NOM) fractions: Membrane fouling mitigation, prediction and mechanism[J]. J Memb Sci, 2016, 505: 15-25.
[12]  Wang J, Mo Y, Mahendra S, et al. Effects of water chemistry on structure and performance of polyamide composite membranes[J]. J Memb Sci, 2014, 452: 415-425.
[13]  Wang Q, Wang Z, Zhu C, et al. Assessment of SMP fouling by foulant–membrane interaction energy analysis[J]. J Memb Sci, 2013, 446: 154-163.
[14]  Xue J, Xiaofei H,Hoek E M V. Role of specific ion interactions in seawater RO membrane fouling by alginic acid[J]. Environ Sci Technol, 2009, 43(10): 3580-3587.
[15]  Yamato N, Kimura K, Miyoshi T, et al. Difference in membrane fouling in membrane bioreactors (MBRs) caused by membrane polymer materials[J]. J Memb Sci, 2006, 280(1-2): 911-919.
[16]  Zhang Y, Zhang M, Wang F, et al. Membrane fouling in a submerged membrane bioreactor: effect of pH and its implications[J]. Bioresour Technol, 2014, 152(1): 7-14.
[17]  彭茜, 冉德钦, 王平, 等. 不同 pH 值下腐殖酸反渗透膜污染中的界面相互作用解析[J]. 中国环境科学, 2011, 31(4): 616-621.
[18]  赵应许, 纵瑞强, 高欣玉, 等. XDLVO 理论解析不同离子条件下海藻酸钠微滤膜污染 [J]. 环境科学, 2014, 4): 1343-1350. 
[19]  赵飞, 许柯, 任洪强, 等. XDLVO理论解析有机物和钙离子对纳滤膜生物污染的影响[J]. 中国环境科学, 2015, 35(12): 3602-3611. 
[20]  Butt H-J, Jaschke M,Ducker W. Measuring surface forces in aqueous electrolyte solution with the atomic force microscope[J]. Bioelectrochem Bioenerg, 1995, 38(1): 191-201.
[21]  Bhattacharjee S, Sharma A,Bhattacharya P K. Estimation and influence of long range solute. Membrane interactions in ultrafiltration[J]. Ind Eng Chem Res, 1996, 35(9): 3108-3121.
[22]  Meagher L, Klauber C,Pashley R. The influence of surface forces on the fouling of polypropylene microfiltration membranes[J]. Colloids Surf A Physicochem Eng Asp, 1996, 106(1): 63-81.
[23]  Brant J A,Childress A E. Membrane-colloid interactions: comparison of extended DLVO predictions with AFM force measurements[J]. Environ Eng Sci, 2002, 19(6): 413-427.
[24]  汪洪生, 陆雍森. 国外膜技术进展及其在水处理中的应用[J]. 膜科学与技术, 1999, 19(4): 12-17. 
[25]  Van Oss C J, Chaudhury M K,Good R J. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems[J]. Chem Rev, 1988, 88(6): 927-941.
[26]  Van Oss C J, Good R,Busscher R. Estimation of the polar surface tension parameters of glycerol and formamide, for use in contact angle measurements on polar solids[J]. J Disper Sci Technol, 1990, 11(1): 75-81.
[27]  Brant J A,Childress A E. Assessing short-range membrane–colloid interactions using surface energetics[J]. J Memb Sci, 2002, 203(1): 257-273.
[28]  Van Oss C J,Good R J. Surface tension and the solubility of polymers and biopolymers: the role of polar and apolar interfacial free energies[J]. J Macromolecular Sci Chem, 1989, 26(8): 1183-1203.
[29]  Van Oss C J. Interfacial forces in aqueous media[M]. 2. Boca Raton: CRC press, 2006. 1-300. 
[30]  Lee S, Kim S, Cho J, et al. Natural organic matter fouling due to foulant–membrane physicochemical interactions[J]. Desalination, 2007, 202(1-3): 377-384.
[31]  Lu X, Peng Y, Ge L, et al. Amphiphobic PVDF composite membranes for anti-fouling direct contact membrane distillation[J]. J Memb Sci, 2016, 505(1): 61-69.
[32]  Wang J, Zheng L, Wu Z, et al. Fabrication of hydrophobic flat sheet and hollow fiber membranes from PVDF and PVDF-CTFE for membrane distillation[J]. J Memb Sci, 2016, 497: 183-193.
[33]  Ma W, Zhang J, Wang X, et al. Effect of PMMA on crystallization behavior and hydrophilicity of poly(vinylidene fluoride)/poly(methyl methacrylate) blend prepared in semi-dilute solutions[J]. Appl Surf Sci, 2007, 253(20): 8377-8388.
[34]  Zuo G,Wang R. Novel membrane surface modification to enhance anti-oil fouling property for membrane distillation application[J]. J Memb Sci, 2013, 447: 26-35.
[35]  Zhao J, Ho K K C, Shamsuddin S-R, et al. A comparative study of fibre/matrix interface in glass fibre reinforced polyvinylidene fluoride composites[J]. Colloids Surf A Physicochem Eng Asp, 2012, 413(21): 58-64.
[36]  Xu C, Wang Y, Lin B, et al. Thermoplastic vulcanizate based on poly(vinylidene fluoride) and methyl vinyl silicone rubber by using fluorosilicone rubber as interfacial compatibilizer[J]. Mater Des, 2015, 88: 170-176.
[37]  Wang F J, Li C Q, Tan Z S, et al. PVDF surfaces with stable superhydrophobicity[J]. Surf Coat Tech, 2013, 222(19): 55-61.
[38]  Chen Z, Rana D, Matsuura T, et al. Study on the structure and vacuum membrane distillation performance of PVDF composite membranes: I. Influence of blending[J]. Sep Sci Technol, 2014, 133: 303-312.
[39]  Wang J, Wu D, Li X, et al. Poly(vinylidene fluoride) reinforced by carbon fibers: Structural parameters of fibers and fiber-polymer adhesion[J]. Appl Surf Sci, 2012, 258(24): 9570-9578.
[40]  Cornelissen E R, Boomgaard T v d,Strathmann H. Physicochemical aspects of polymer selection for ultrafiltration and microfiltration membranes[J]. Colloid Surf A, 1996, 138(138): 283-289.
[41]  Ding Y, Tian Y, Li Z, et al. Interaction energy evaluation of the role of solution chemistry and organic foulant composition on polysaccharide fouling of microfiltration membrane bioreactors[J]. Chem Eng Sci, 2013, 104(50): 1028-1035.
[42]  Ding Y, Tian Y, Li Z, et al. Microfiltration (MF) membrane fouling potential evaluation of protein with different ion strengths and divalent cations based on extended DLVO theory[J]. Desalination, 2013, 331(331): 62-68.
[43]  Li Z, Tian Y, Ding Y, et al. Fouling potential evaluation of soluble microbial products (SMP) with different membrane surfaces in a hybrid membrane bioreactor using worm reactor for sludge reduction[J]. Bioresour Technol, 2013, 140(140c): 111-9.
[44]  Chen L, Tian Y, Cao C Q, et al. Interaction energy evaluation of soluble microbial products (SMP) on different membrane surfaces: role of the reconstructed membrane topology[J]. Water Res, 2012, 46(8): 2693-704.
[45]  Cai H, Fan H, Zhao L, et al. Effects of surface charge on interfacial interactions related to membrane fouling in a submerged membrane bioreactor based on thermodynamic analysis[J]. J Colloid Interface Sci, 2016, 465: 33-41.
[46]  Hong H, Peng W, Zhang M, et al. Thermodynamic analysis of membrane fouling in a submerged membrane bioreactor and its implications[J]. Bioresour Technol, 2013, 146(10): 7-14.
[47]  Zhao L, Zhang M, He Y, et al. A new method for modeling rough membrane surface and calculation of interfacial interactions[J]. Bioresour Technol, 2016, 200(2): 451-457.
[48]  Zhang J, Wang Z, Zhang X, et al. Enhanced antifouling behaviours of polyvinylidene fluoride membrane modified through blending with nano-TiO2/polyethylene glycol mixture[J]. Appl Surf Sci, 2015, 345: 418-427.
[49]  Zhao F, Chu H, Su Y, et al. Microalgae harvesting by an axial vibration membrane: The mechanism of mitigating membrane fouling[J]. J Memb Sci, 2016, 508: 127-135.
[50]  Nguyen V, Karunakaran E, Collins G, et al. Physicochemical analysis of initial adhesion and biofilm formation of Methanosarcina barkeri on polymer support material[J]. Colloids Surf B Biointerfaces, 2016, 143: 518-525.
[51]  Feng L, Li X, Du G, et al. Adsorption and fouling characterization of Klebsiella oxytoca to microfiltration membranes[J]. Process Biochem, 2009, 44(11): 1289-1292.
[52]  Feng L, Li X, Song P, et al. Surface interactions and fouling properties of Micrococcus luteus with microfiltration membranes[J]. Appl Biochem Biotechnol, 2011, 165(5-6): 1235-44.
[53]  Meng X, Tang W, Wang L, et al. Mechanism analysis of membrane fouling behavior by humic acid using atomic force microscopy: Effect of solution pH and hydrophilicity of PVDF ultrafiltration membrane interface[J]. J Memb Sci, 2015, 487(1): 180-188.
[54]  Zhang J, Wang Q, Wang Z, et al. Modification of poly (vinylidene fluoride)/polyethersulfone blend membrane with polyvinyl alcohol for improving antifouling ability[J]. J Memb Sci, 2014, 466: 293-301.
[55]  Liu F, Hashim N A, Liu Y, et al. Progress in the production and modification of PVDF membranes[J]. J Memb Sci, 2011, 375(1-2): 1-27.
[56]  Lalia B S, Kochkodan V, Hashaikeh R, et al. A review on membrane fabrication: Structure, properties and performance relationship[J]. Desalination, 2013, 326(10): 77-95.
[57]  王晖, 顾帼华. 固体的表面能及其亲水/疏水性[J]. 化学通报, 2009, 12: 1091-1096. 
[58]  Ulbricht M, Ansorge W, Danielzik I, et al. Fouling in microfiltration of wine: The influence of the membrane polymer on adsorption of polyphenols and polysaccharides[J]. Sep Sci Technol, 2009, 68(3): 335-342.
[59]  高伟. 几种典型物质对超滤膜的污染及其影响因素与机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. 1-199. 
[60]  Kim S,Hoek E M. Interactions controlling biopolymer fouling of reverse osmosis membranes[J]. Desalination, 2007, 202(1): 333-342.
[61]  Lin T, Shen B, Chen W, et al. Interaction mechanisms associated with organic colloid fouling of ultrafiltration membrane in a drinking water treatment system[J]. Desalination, 2014, 332(1): 100-108.
[62]  高欣玉, 纵瑞强, 王平, 等. xDLVO 理论解析微滤膜海藻酸钠污染中 pH 值影响机制[J]. 中国环境科学, 2014, 34(4): 958-965.
[63]  Feng L, Li X, Song P, et al. Surface interactions and fouling properties of Micrococcus luteus with microfiltration membranes[J]. Appl Biochem Biotechnol, 2011, 165(5-6): 1235-1244.
[64]  Wang S, Guillen G, Hoek E M. Direct observation of microbial adhesion to membranes[J]. Environ Sci Technol, 2005, 39(17): 6461-6469.
[65]  Subramani A, Huang X,Hoek E M. Direct observation of bacterial deposition onto clean and organic-fouled polyamide membranes[J]. J Colloid Interface Sci, 2009, 336(1): 13-20.
[66]  Seifollahy Astaraee R, Mohammadi T,Kasiri N. Analysis of BSA, dextran and humic acid fouling during microfiltration, experimental and modeling[J]. Food Bioprod Process, 2015, 94: 331-341.
[67]  Lin T, Lu Z,Chen W. Interaction mechanisms and predictions on membrane fouling in an ultrafiltration system, using the XDLVO approach[J]. J Memb Sci, 2014, 461: 49-58.
[68]  Lin T, Lu Z,Chen W. Interaction mechanisms of humic acid combined with calcium ions on membrane fouling at different conditions in an ultrafiltration system[J]. Desalination, 2015, 357(9619): 26-35.
[69]  Brant J. Colloidal adhesion to hydrophilic membrane surfaces[J]. J Memb Sci, 2004, 241(2): 235-248.
[70]  Brant J A,Childress A E. Membrane–Colloid Interactions: Comparison of Extended DLVO Predictions with AFM Force Measurements[J]. Environ Sci Technol, 2002, 19(6): 413-427.
[71]  Thwala J M, Li M, Wong M C, et al. Bacteria-polymeric membrane interactions: atomic force microscopy and XDLVO predictions[J]. Langmuir, 2013, 29(45): 13773-82.
[72]  Hoek E M, Bhattacharjee S,Elimelech M. Effect of membrane surface roughness on colloid-membrane DLVO interactions[J]. Langmuir, 2003, 19(11): 4836-4847.
[73]  Lin H, Zhang M, Mei R, et al. A novel approach for quantitative evaluation of the physicochemical interactions between rough membrane surface and sludge foulants in a submerged membrane bioreactor[J]. Bioresour Technol, 2014, 171: 247-252.
[74]  Mahendran B, Lin H, Liao B, et al. Surface properties of biofouled membranes from a submerged anaerobic membrane bioreactor after cleaning[J]. J Environ Eng, 2010, 137(6): 504-513.


《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com