Position:Home >> Abstract

Formation of micro reaction locations and its effect on the properties of polymer membranes
Authors: Yuqing Zhang*, Ming Yong, Shuai Sun
Units: School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072
KeyWords: inorganic functional material, non-stoichiometric material, solid super acid, micro reaction locations
ClassificationCode:TQ316.6
year,volume(issue):pagination: 2018,38(3):134-143

Abstract:
  The formation of micro reaction locations (MRLs) and its effect on the properties of polymer membranes were studied. Though the performance of polymer membranes can be enhanced by adding functional inorganic materials, further enhancement is limited because there are few Lewis acid sites and hydroxide radicals on the surface of these inorganic functional materials. In pursuit of better performance, nonstoichiometric inorganic functional materials with various point defects and numerous exposed hydroxide radicals were used as filler to improve the hydrophilicity and antifouling properties of the membranes. However, the above methods just doped inorganic functional materials into polymer membranes by physical interaction on the interface between aqueous solution and the membrane, without any chemical interaction. In order to further enhance anti-fouling property and hydrophilicity of membranes, the membranes should be modified by doping novel small size functional materials, which can form MRLs inside channels and on the surface of the membrane to effectively degrade organic, inorganic pollutants and microbes.

Funds:
国家自然科学基金(21676180), 天津市科技支撑重点项目(15ZCZDSF00160), 天津市科技兴海计划 (KJXH2014-05)

AuthorIntro:
张裕卿,博士(后),教授,从事化工功能材料及在化工分离、环境、能源和生物医药等方面的研究工作。Tel:86-22-13602077041,E-mail:zhangyuqing@tju.edu.cn

Reference:
[1] Lee A, Elam J W, Darling S B. Membrane Materials for Water Purification: Design Development and Application[J]. Environmental Science Water Research & Technology, 2016, 2(1):17-42.
[2] 敖漉, 刘文君, 方振东,等. 超滤膜污染的主要成因与控制膜污染的预处理技术[J]. 后勤工程学院学报, 2017, 33(4):41-47. 
[3] F. Liu, N.A. Hashim, Y. Liu, M.R.M. Abed, K. Li, Progress in the production and modification of PVDF membranes, J. Membr. Sci. 2011. 375. 1–27.
[4] C.H. Yu, L.C. Fang, S.K. Lateel, C.H. Wu, C.F. Lin, Enzymatic treatment forcontrolling irreversible membrane fouling in cross-flow humic acid-fed ultrafiltration, J. Hazard. Mater. 177. 2010. 1153–1158
[5] Zhang, Y. and M. Cui. Porous YxFeyZr1−x−yO2 coated TiO2 solid superacid particles/PVDF hybrid membranes with anti-fouling property, Chemical Engineering Journal. 2016. 301: 342-352.
[6] W. Zhang, Z. Shi, F. Zhang, X. Liu, J. Jin, L. Jiang, Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux, Adv. Mater. 2013.25. 2071–2076.
[7] S. Kim, L. Chen, J.K. Johnson, E. Marand, Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: theory and experiment, J. Membr. Sci. 294. 2007. 147–158.
[8] J. Ahn, W.J. Chung, I. Pinnau, M.D. Guiver, Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation, J. Membr. Sci. 314.2008. 123–133.
[9] J. Ahn, W.J. Chung, I. Pinnau, J. Song, N. Du, G.P. Robertson, M.D. Guiver, Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1), J. Membr. Sci. 346. 2010. 280–287.
[10] Y. Zhang, L. Shan, Z. Tu, Y. Zhang, Preparation and characterization of novel Ce doped nonstoichiometric nanosilica/polysulfone composite membranes, Sep. Purif. Technol. 63. 2008. 207–212
[11] Zhang Y, Cui P, Du T, et al. Development of a sulfated Y-doped nonstoichiometric zirconia/polysulfone composite membrane for treatment of wastewater containing oil [J]. Separation & Purification Technology, 2009, 70(2): 153-159.
[12] Zhang Y, Jin Z, Shan X, et al. Preparation and characterization of phosphorylated Zr-doped hybrid silica/PSF composite membrane [J]. Journal of Hazardous Materials, 2011, 186(1): 390-5.
[13] Zhang, Y. and P. Liu. Polysulfone(PSF) composite membrane with micro-reaction locations (MRLs) made by doping sulfated TiO2 deposited on SiO2 nanotubes (STSNs) for cleaning wastewater. Journal of Membrane Science. 2015. 493: 275-284.
[14] Zhang, Y., et al. ZrO2 solid superacid porous shell/void/TiO2 core particles (ZVT)/polyvinylidene fluoride (PVDF) composite membranes with anti-fouling performance for sewage treatment. Chemical Engineering Journal. 2015. 260: 258-268.
[15] Zhang, Y., et al. Effect of doping porous ZrO2 solid superacid shell/void/TiO2 core nanoparticles (ZVT) on properties of polyvinylidene fluoride (PVDF) membranes. Desalination. 2015. 358: 84-93.
[16] Kogler M, Köck E M, Vanicek S, et al. Enhanced kinetic stability of pure and Y-doped tetragonal ZrO2.[J]. Inorganic Chemistry, 2014, 53(24):13247-57.
[17] Wang, Peng Cheng, Zhu, Jie, Liu, Xiang. Regioselective Nitration of Aromatics with Nanomagnetic Solid Superacid SO42−/ZrO2‐MxOy‐Fe3O4 and Its Theoretical Studies[J]. Chempluschem, 2013, 78(4):310-317.
[18] Zhang, Y. and M. Cui. Porous YxFeyZr1−x−yO2 coated TiO2 solid superacid particles/PVDF hybrid membranes with anti-fouling property. Chemical Engineering Journal, 2016. 301: 342-352.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号