Position:Home >> Abstract

Hydrogen production by acid-base amphiprotic water electrolysis using polybenzimidazole membranes
Authors: LIU Shuai, LEI Qing, WANG Baoguo
Units: The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P R China
KeyWords: water electrolysis, cathodic polarization, polybenzimidazole, water dissociation, quaternary ammonium base
ClassificationCode:TQ151.1
year,volume(issue):pagination: 2018,38(5):1-7

Abstract:
 In order to reduce energy consumption in electrolytic hydrogen production, a novel method named acid-base amphiprotic water electrolysis using membranes is proposed. The membrane separates acidic electrolyte and alkaline electrolyte. Hydrogen-evolving reactions (HER) occurs in acidic electrolyte which reduces the polarization and enhances the HER materials stability. The core issue is to suppress acid-base neutralization. The positive ions in quaternary ammonium base have larger ion radius than potassium ion which is beneficial to hinder ions permeability. Polybenzimidazole membranes were selected due to its stability for acidic and alkaline solution. In this paper, the relationship between ion species, concentration and diffusion are analyzes in detail. The performance and stability of membranes are discussed.

Funds:
国家自然科学基金(项目批准号:21776154)。中国博士后科学基金(项目批准号:2017M610913)

AuthorIntro:
第一作者简介:刘帅(1987-),男,籍贯:山东淄博,职称:博士后,研究方向:离子分离膜,E-mail:liushuai99@mail.tsinghua.edu.cn 通讯作者: 王保国 教授,E-mail:bgwang@tsinghua.edu.cn

Reference:
 [1] Tachibana, Y.; Vayssieres, L.; Durrant, J. R., Artificial photosynthesis for solar water-splitting[J]. Nat Photonics, 2012, 6 (8):511-518.
[2] Reece, S. Y.; Hamel, J. A.; Sung, K., et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts[J]. Science, 2011, 334 (6056):645-648.
[3] Ursua, A.; Gandia, L. M.; Sanchis, P., Hydrogen production from water electrolysis: current status and future trends[J]. P IEEE, 2012, 100 (2):410-426.
[4] Gandía, L. M.; Oroz, R.; Ursúa, A., et al. Renewable hydrogen production: performance of an alkaline water electrolyzer working under emulated wind conditions[J]. Energy Fuel, 2007, 21 (3), 1699-1706.
[5] Barbir, F., PEM electrolysis for production of hydrogen from renewable energy sources[J]. Sol Energy, 2005, 78 (5):661-669.
[6] 张开悦; 刘伟华; 陈晖,等. 碱性电解水析氢电极的研究进展[J]. 化工进展, 2015, 34 (10), 3680-3687.
[7] Dincer, I.; Acar, C., Review and evaluation of hydrogen production methods for better sustainability[J]. Int J Hydrogen Energy, 2015, 40 (34):11094-11111.
[8] Grigoriev, S.; Porembsky, V.; Fateev, V., Pure hydrogen production by PEM electrolysis for hydrogen energy[J]. Int J Hydrogen Energy, 2006, 31 (2):171-175.
[9] Zeng, K.; Zhang, D., Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Prog Energ Combust, 2010, 36 (3):307-326.
[10] 于娇娇; 苏伟; 孙艳, 水制氢技术研究进展[J]. 化学工业与工程, 2012, 29 (5), 58-63.
[11] Raj, I. A.; Vasu, K., Transition metal-based cathodes for hydrogen evolution in alkaline solution: electrocatalysis on nickel-based ternary electrolytic codeposits[J]. J Appl Electrochem, 1992, 22 (5):471-477.
[12] Hoor, F. S.; Tharamani, C.; Ahmed, M. , et al. Electrochemical synthesis of Fe–Mo and Fe–Mo–Pt alloys and their electrocatalytic activity for methanol oxidation[J]. J Power Sources 2007, 167 (1):18-24.
[13] Shan, Z.; Liu, Y.; Chen, Z., et al. Amorphous Ni–S–Mn alloy as hydrogen evolution reaction cathode in alkaline medium[J]. Int J Hydrogen Energy, 2008, 33 (1):28-33.
[14] Zheng, Z.; Li, N.; Wang, C.-Q., et al. Electrochemical synthesis of Ni–S/CeO2 composite electrodes for hydrogen evolution reaction[J]. J Power Sources 2013, 230:10-14.
[15] Solmaz, R.; Döner, A.; Karda?, G., Preparation, characterization and application of alkaline leached CuNiZn ternary coatings for long-term electrolysis in alkaline solution[J]. Int J Hydrogen Energy, 2010, 35 (19):10045-10049.
[16] McDonald, M. B.; Ardo, S.; Lewis, N. S., et al. Use of Bipolar Membranes for Maintaining Steady‐State pH Gradients in Membrane‐Supported, Solar‐Driven Water Splitting[J]. ChemSusChem, 2014, 7 (11):3021-3027.
[17] Simons, R., Preparation of a high performance bipolar membrane[J]. J Membr Sci, 1993, 78 (1):13-23.
[18] Strathmann, H., Electrodialysis, a mature technology with a multitude of new applications[J]. Desalination, 2010, 264 (3):268-288.
[19] Mafé, S.; Ram??rez, P.; Alcaraz, A., Electric field-assisted proton transfer and water dissociation at the junction of a fixed-charge bipolar membrane[J]. Chem Phys Lett, 1998, 294 (4):406-412.
[20] 林小城. 面向碱性燃料电池应用的阴离子交换膜的制备和表征[D]. 中国科学技术大学, 2013.
[21] Iojoiu, C.; Chabert, F.; Maréchal, M., et al. From polymer chemistry to membrane elaboration: A global approach of fuel cell polymeric electrolytes[J]. J Power Sources, 2006, 153 (2):198-209.
[22] Cope, A. C.; Mehta, A. S., Mechanism of the Hofmann elimination reaction: an ylide intermediate in the pyrolysis of a highly branched quaternary hydroxide[J]. J Am Chem Soc, 1963, 85 (13):1949-1952.
[23] Chempath, S.; Boncella, J. M.; Pratt, L. R., et al. Density functional theory study of degradation of tetraalkylammonium hydroxides[J]. J Phys Chem C, 2010, 114 (27):11977-11983.
[24] Chempath, S.; Einsla, B. R.; Pratt, L. R., et al. Mechanism of tetraalkylammonium headgroup degradation in alkaline fuel cell membranes[J]. J Phys Chem C, 2008, 112 (9):3179-3182.
[25] Xing, B.; Savadogo, O., The effect of acid doping on the conductivity of polybenzimidazole (PBI) [J]. J New Mat Electr Sys, 1999, 2 (2):95-102.
[26] Glipa, X.; Bonnet, B.; Mula, B., et al. Investigation of the conduction properties of phosphoric and sulfuric acid doped polybenzimidazole[J]. J Mater Chem, 1999, 9 (12):3045-3049.
[27] Hou, H.; Sun, G.; He, R., et al. Alkali doped polybenzimidazole membrane for alkaline direct methanol fuel cell[J]. Int J Hydrogen Energy, 2008, 33 (23):7172-7176.
[28] Xing, B.; Savadogo, O., Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI) [J]. Electrochem Commun, 2000, 2 (10):697-702.
[29] Li, L.-Y.; Yu, B.-C.; Shih, C.-M., et al. Polybenzimidazole membranes for direct methanol fuel cell: Acid-doped or alkali-doped? [J]. J. Power Sources, 2015, 287 (1):386-395.
[30] 浦鸿汀; 叶盛, 聚苯并咪唑的合成、性能及在燃料电池膜材料中的应用[J]. 高分子通报, 2006, (2): 9-17.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号