Position:Home >> Abstract

Study on the influence of series RED stack numbers on energy conversion efficiency in co-flow RED system
Authors: HE Qichen, XU Shiming, WU Xi, WU Debing, HU Junyong, ZHANG Kai, JIN Dongxu, WANG Ping
Units: (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China)
KeyWords: reverse electrodialysis; series stack; co-flow; energy conversion efficiency; output voltage
ClassificationCode:TQ152
year,volume(issue):pagination: 2018,38(5):23-30

Abstract:
 Reverse Electrodialysis stack (RED stack) can convert salinity gradient energy which exists widely in nature or can be made by artificial methods into electricity. To effectively enhance the energy conversion efficiency and output voltage, the model for RED stack energy conversion was developed, which can be used to research on the series multiple stacks (multiple electrodes) in a co-flow RED system. The effects of total flow passageway length of RED, solution flow velocity and series RED stack numbers on energy conversion efficiency and output characteristics of RED system were discussed. Simulation results show that under the given operation parameters, reducing solution flow velocity and increasing total flow passageway length and RED stack numbers can improve power generation efficiency of the system. But the growth rate will be down with flow passageway length and RED stack numbers increasing continuously. The increase of series RED stack numbers not only enhances the output voltage and power density of the system, but also improves the internal resistance, which leads to a significant influence of system output current on output voltage and power density.

Funds:
国家自然科学基金项目“基于溶液浓度变化的‘热-电’转换循环特性基础研究”(51776029);国家自然科学基金青年科学基金项目“逆电渗析法热-电转换系统匹配工质对的溶解与电导特性研究”(51606024)

AuthorIntro:
第一作者简介:何其琛(1992-),男,山西省原平人,硕士研究生,研究方向为逆电渗析发电数值模拟,Email: hqc420711536@mail.dlut.edu.cn *通讯作者:徐士鸣(1957-),男,博士,教授,博士生导师,Email: xsming@dlut.edu.cn

Reference:
 [1] Post J W, Veerman J, Hamelers H V M, et al. Salinity-gradient power: Evaluation of pressure retarded osmosis and reverse electrodialysis[J]. Journal of Membrane Science, 2007, 288: 218-230.
[2] Wick G L, Schmitt W R. Prospects for renewable energy from the sea[J]. Marine Technology Society Journal, 1977, 11: 16-21.
[3] 刘伯羽, 李少红, 王刚. 盐差能发电技术的研究进展[J]. 可再生能源, 2010, 28(2): 141-144.
[4] 徐士鸣, 吴曦, 吴德兵, 等. 从吸收制冷到逆向电渗析发电——溶液浓差能应用新技术[J]. 制冷技术, 2017, 37(2): 8-13.
[5] Long R, Li B D, Liu Z C, et al. Hybrid membrane distillation-based reverse electrodialysis electricity generation system to harvest low-grade thermal energy[J]. Journal of Membrane Science, 2017, 525: 107-115.
[6] Pattle R E. Production of electric power by mixing fresh and salt water in the hydroelectric pile[J]. Nature, 1954, 174(4431): 660.
[7] Kim H K, Lee M S, Lee S Y, et al. High power density of reverse electrodialysis with pore-filling ion exchange membranes and a high open-area spacer[J]. Journal of Materials Chemistry A, 2015, 3: 16302-16306.
[8] Güler E, Baak W V, Saakes M, et al. Monovalent-ion-selective membranes for reverse electrodialysis[J]. Journal of Membrane Science, 2014, 455: 254-270.
[9] 徐士鸣,吴曦,冷强. 一种利用低品位热降解高浓有机废水方法[P]. 中国, 发明专利, 201711384061.2. 2017-12-20.
[10] 陈霞,蒋晨啸,汪耀明,等. 反向电渗析在新能源及环境保护应用中的研究进展[J]. 化工学报, 2018, 69(1): 188-202.
[119] Vermaas D A, Saakes M, Nijmeijer K. Doubled power density from salinity gradients at reduced intermembrane distance[J]. Environmental Science & Technology, 2011, 45: 7089-7095.
[120] Cipollina A, Micale G. Sustainable Energy from Salinity Gradients[M]. Cambridge: Woodhead Publishing, 2016: 80.
[131] Post J W, Hamelers H V M, Buisman C J N. Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system[J]. Environmental Science & Technology, 2008, 42: 5785–5790.
[142] Yip N Y, Vermaas D A, Nijmeijer K, et al. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients[J]. Environmental Science & Technology, 2014, 48: 4925-4936.
[153] Veerman J, Saakes M, Metz S J, et al. Electrical power from sea and river water by reverse electrodialysis: A first step from the laboratory to a real power plant[J]. Environmental Science & Technology, 2010, 44: 9207-9212.
[164] Vermaas D A, Veerman J, Yip N Y, et al. High efficiency in energy generation from salinity gradients with reverse electrodialysis[J]. ACS Sustainable Chemistry & Engineering, 2013, 1: 1295-1302.
[1175] Kim K S, Ryoo W, Chun M S, et al. Simulation of enhanced power generation by reverse electrodialysis stack module in serial configuration[J]. Desalination, 2011, 318: 79-87.
[186] 徐士鸣, 吴德兵, 吴 曦, 等. 氯化锂溶液为工质的溶液浓差发电实验研究[J]. 大连理工大学学报, 2017, 57(4): 337-344.
[197] Veerman J, Saakes M, Metz S J, et al. Reverse electrodialysis: A validated process model for design and optimization[J]. Chemical Engineering Journal, 2011, 166: 256-268.
[2018] Tedecso M, Cipollina A, Tamburini A, et al. A simulation tool for analysis and design of reverse electrodialysis using concentrated brines[J]. Chemical Engineering Research and Design, 2015, 93: 441-456.
[2119] Veerman J, Jong R M, Saakes M, et al. Reverse electrodialysis: Comparison of six commercial membrane pairs on the thermodynamic efficiency and power density[J]. Journal of Membrane Science, 2009, 343: 7-15.
[220] Veerman J, Saakes M, Metz S J, et al. Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water[J]. Journal of Membrane Science, 2009, 327: 136-144. 
[231] Vermaas D A, Güler E, Saakes M, et al. Theoretical power density from salinity gradients using reverse electrodialysis[J]. Energy Procedia, 2012, 20: 170 – 184.
[242] Yip N Y, Elimelech M. Thermodynamic and energy efficiency analysis of power generate on from natural salinity gradients by pressure retarded osmosis[J]. Environmental Science & Technology, 2012, 46: 5230-5239.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号