Position:Home >> Abstract

Authors:
Units:
KeyWords:
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2020,40(1):37-44

Abstract:
 To improve CO2 separation performance of Pebax matrix membrane, TPP was used as the additive to blend with Pebax1657 matirx. The effect of TPP on the morphology, structure and gas permeation performance of Pebax/TPP blend was investigated. Pebax and TPP had a good compartibility which was characterized with SEM, XRD, ATR-FTIR and TGA analysis. With the incorporation of TPP, the solubility and diffusion coefficients of the blend membranes both increased. Thus, the CO2 and N2 permeability of Pebax/TPP membranes increased with the increase of TPP content, while the CO2/N2 selectivity reduced at the same time.

Funds:
国家自然科学基金(21908215);大连化物所科研创新基金项目(Grant: DICP ZZBS201713)

AuthorIntro:
第一作者简介:伍勇东(1990-),女,湖南益阳,博士生,从事气体分离方面研究,E-mail:wuyongdong@dicp.ac.cn 通讯作者,E-mail:renjizhong@dicp.ac.cn; zhaodan210@dicp.ac.cn

Reference:
 [1] G.-R. Walther, E. Post, P. Convey, A. Menzel, C. Parmesank, T.J.C. Beebee, J.-M. Fromentin, O. Hoegh-Guldberg, F. Bairlein, Ecological responses to recent climate change, Nature, (2002) 389-395.
[2] O. Hoegh-Guldberg, P.J. Mumby, A.J. Hooten, R.S. Steneck, P. Greenfield, E. Gomez, C.D. Harvell, P.F. Sale, A.J. Edwards, K. Caldeira, N. Knowlton, C.M. Eakin, R. Iglesias-Prieto, N. Muthiga, R.H. Bradbury, A. Dubi, M.E. Hatziolos, Coral reefs under rapid climate change and ocean acidification, Science 318 (2007) 1737-1742.
[3] D.M. D'Alessandro, B. Smit, J.R. Long, Carbon dioxide capture: prospects for new materials, Angew Chem Int Ed Engl, 49 (2010) 6058-6082.
[4] Y. Yampolskii, Polymeric gas separation membranes, Macromolecules, 45 (2012) 3298-3311.
[5] L.M. Robeson, The upper bound revisited, Journal of Membrane Science, 320 (2008) 390-400.
[6] V.I. Bondar, B.D. Freeman, I. Pinnau, Gas transport properties of poly(ether-b-amide) segmented block copolymers, Journal of Polymer Science: Part B: Polymer Physics, 38 (2000) 2051-2062.
[7] J.H. Kim, S.Y. Ha, Y.M. Lee, Gas permeation of poly(amide-6-b-ethylene oxide) copolymer, Journal of Membrane Science, 190 (2001) 179-193.
[8] S. Feng, J. Ren, Z. Li, H. Li, K. Hua, X. Li, M. Deng, Poly(amide-12-b-ethylene oxide)/glycerol triacetate blend membranes for CO2 separation, International Journal of Greenhouse Gas Control, 19 (2013) 41-48.
[9] A. Car, C. Stropnik, W. Yave, K.-V. Peinemann, PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation, Journal of Membrane Science, 307 (2008) 88-95.
[10] Y.T. Qiu, J.Z. Ren, D. Zhao, H. Li, K.S. Hua, X. Li, M.C. Deng, Blend membranes of poly(amide-6-b-ethylene oxide)/[Emim][PF 6 ] for CO2 separation, Separation and Purification Technology, 179 (2017) 309-319.
[11] Y.D. Wu, D. Zhao, J.Z. Ren, Y.T. Qiu, M.C. Deng, A novel Pebax-C60(OH)24/PAN thin film composite membrane for carbon dioxide capture, Separation and Purification Technology, 215 (2019) 480-489.
[12] P. Bernardo, J.C. Jansen, F. Bazzarelli, F. Tasselli, A. Fuoco, K. Friess, P. Izák, V. Jarmarová, M. Ka?írková, G. Clarizia, Gas transport properties of Pebax®/room temperature ionic liquid gel membranes, Separation and Purification Technology, 97 (2012) 73-82.
[13] H. Lin, B.D. Freeman, Materials selection guidelines for membranes that remove CO2 from gas mixtures, Journal of Molecular Structure, 739 (2005) 57-74.
[14] M.B. Miller, D.R. Luebke, R.M. Enick, CO2-philic oligomers as novel solvents for CO2 absorption, Energy & Fuels, 24 (2010) 6214-6219.
[15] H. Sanaeepur, A.E. Amooghin, A. Moghadassi, A. Kargari, Preparation and characterization of acrylonitrile–butadiene–styrene/poly(vinyl acetate) membrane for CO2 removal, Separation and Purification Technology, 80 (2011) 499-508.
[16] H. Abdul Mannan, T.M. Yih, R. Nasir, H. Muhktar, D.F. Mohshim, Fabrication and characterization of polyetherimide/polyvinyl acetate polymer blend membranes for CO2/CH4 separation, Polymer Engineering & Science, 59 (2019) E293-E301.
[17] M. Abdollahi, M. Khoshbin, H. Biazar, G. Khanbabaei, Preparation, morphology and gas permeation properties of carbon dioxide-selective vinyl acetate-based Polymer/Poly(ethylene oxide-b-amide 6) blend membranes, Polymer, 121 (2017) 274-285.
[18] H. Rabiee, M. Soltanieh, S.A. Mousavi, A. Ghadimi, Improvement in CO2/H2 separation by fabrication of poly(ether-b-amide 6)/glycerol triacetate gel membranes, Journal of Membrane Science, 469 (2014) 43-58.
[19] S. Feng, J. Ren, D. Zhao, H. Li, K. Hua, X. Li, M. Deng, CO2-philic polyether-block-amide/glycerol triacetate blend membranes: gas-permeation performance, thermal stability, and storage stability, Journal of Applied Polymer Science, 136 (2019) 47620.
[20] T.C. Merkel, V.I. Bondar, K. Nagai, B.D. Freeman, I. Pinnau, Gas sorption, diffusion, and permeation in poly(dimethylsiloxane), Journal of Polymer Science: Part B: Polymer Physics, 38 (2000) 415-434.
[21] 邱永涛, 任吉中, 赵丹, 李晖, 花开胜, 王颖, 黄雪飞, 邓麦村, Pebax_Bmim_PF_6_共混膜的制备及性能研究, 膜科学与技术, (2016) 9-16.
[22] S. Meshkat, S. Kaliaguine, D. Rodrigue, Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation, Separation and Purification Technology, 235 (2020) 116150.
[23] S.A. Mohammed, A.M. Nasir, F. Aziz, G. Kumar, W. Sallehhudin, J. Jaafar, W.J. Lau, N. Yusof, W.N.W. Salleh, A.F. Ismail, CO2/N2 selectivity enhancement of PEBAX MH 1657/Aminated partially reduced graphene oxide mixed matrix composite membrane, Separation and Purification Technology, 223 (2019) 142-153.
[24] S.R. Reijerkerk, M.H. Knoef, K. Nijmeijer, M. Wessling, Poly(ethylene glycol) and poly(dimethyl siloxane): Combining their advantages into efficient CO2 gas separation membranes, Journal of Membrane Science, 352 (2010) 126-135.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号