Position:Home >> Abstract

Authors:
Units:
KeyWords:
ClassificationCode:TQ 028.8
year,volume(issue):pagination: 2020,40(2):30-38

Abstract:
Ion sieving plays a very important role in the field of chemical separation. Currently available techniques focus on constructing membranes with nanochannels and nanopores for separating ions through the size sieving mechanism. But achieving precise screening of monovalent/multivalent metal ions remains a significant challenge. In this paper, a two-dimensional g-C3N4/GO composite membrane was prepared by vacuum filtration. Such a membrane exhibits double-pitch sub-nano ion channels between layers with effective widths of ~8.6 ? and 7.6 ?, respectively. The channel sizes fall in between monovalent and multivalent ion hydration diameters and thus it can be used to accurately and efficiently screen monovalent/multivalent metal ions. At the same time, in the preparation process of composite membranes, since g-C3N4 can gently reduce corresponding GO nanosheets, an interlayer microenvironment favorable for ion sieving is constructed. In the ion sieving experiment, the GO membrane has no sieving performance for Na+/multivalent metal ions. However, the composite membrane can effectively separate Na+/multivalent ions, and the separation factor can reach more than 10. The Na+/Al3+ separation factor is even as high as 35. It is shown that the g-C3N4/GO composite membrane has excellent monovalent/multivalent ion sieving.

Funds:
国家级大学生创新实验项目基金(201810359032)及国家自然科学基金(21978062)项目。

AuthorIntro:
第一作者简介:冯才兴(1998-),男,贵州六盘水人,本科生,主要从事GO-g-C3N4复合膜的制备及表征研究. 通讯作者,E-mail:ranjin@hfut.edu.cn

Reference:
[1] Surwade S P, Smirnov S N, Vlassiouk I V, et al. Water desalination using nanoporous single-layer graphene[J]. Nat Nanotechnol, 2015, 10(5): 459.
[2] Huang L, Li Y, Zhou Q, et al. Graphene oxide membranes with tunable semipermeability in organic solvents[J]. Adv Mater, 2015, 27(25): 3797-3802.
[3] Naguib M, Mochalin V N, Barsoum M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Adv Mater, 2014, 26(7): 992-1005.
[4] Chen C, Wang J, Liu D, et al. Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation[J]. Nat Commun, 2018, 9(1): 1902.
[5] Wang Y, Li L, Wei Y, et al. Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self‐supporting spacers[J]. Angew Chem Int Ed, 2017, 56(31): 8974-8980.
[6] Sun L, Ying Y, Huang H, et al. Ultrafast molecule separation through layered WS2 nanosheet membranes[J]. ACS Nano, 2014, 8(6): 6304-6311.
[7] Wang D, Wang Z, Wang L, et al. Ultrathin membranes of single-layered MoS2 nanosheets for high-permeance hydrogen separation[J]. Nanoscale, 2015, 7(42): 17649-17652.
[8] Peng Y, Li Y, Ban Y, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215): 1356-1359.
[9] Huang K, Liu G, Lou Y, et al. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution[J]. Angew Chem Int Edit, 2014, 53(27): 6929-6932.
[10] Joshi R K, Carbone P, Wang F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172): 752-754.
[11] 氧化石墨烯膜表面褶皱对其气体和液体分离性能的影响[J]. 膜科学与技术, 2018, 38(04): 7.
[12] Jia Z, Wang Y. Covalently crosslinked graphene oxide membranes by esterification reactions for ions separation[J]. J Mater Chem A, 2015, 3(8): 4405-4412.
[13] 王晨颖, 汪 菊, 漆 虹. 多巴胺接枝GO-Al2O3膜对Na+/Mg2+的分离性能[J]. 膜科学与技术, 2018, 38(05): 55-61+83.
[14] Xi Y H, Liu Z, Ji J, et al. Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions[J]. J Membr Sci, 2018, 550: 208-218.
[15] 王朋辉, 李怡恩, 张亚涛. 氧化石墨烯尺寸调控及其复合膜分离性能研究[J]. 膜科学与技术, 2019, 39(03):62-69.
[16] Murata K, Mitsuoka K, Hirai T, et al. Structural determinants of water permeation through aquaporin-1[J]. Nature, 2000, 407(6804): 599.
[17] Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat Mater, 2009, 8(1): 76.
[18] Yang S, Gong Y, Zhang J, et al. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light[J]. Adv Mater, 2013, 25(17): 2452-2456.
[19] Xu J, Zhang L, Shi R, et al. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis[J]. J Mater Chem A, 2013, 1(46): 14766-14772.
[20] Zhou F, Tien H N, Xu W L, et al. Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO2-philic agent for highly efficient CO2 capture[J]. Nat Commun, 2017, 8(1): 2107.
[21] Ferrari A C, Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nat Nanotechnol, 2013, 8(4): 235.
[22] Moon I K, Lee J, Ruoff R S, et al. Reduced graphene oxide by chemical graphitization[J]. Nat Commun, 2010, 1: 73.
[23] Yuan Y, Gao X, Wei Y, et al. Enhanced desalination performance of carboxyl functionalized graphene oxide nanofiltration membranes[J]. Desalination, 2017, 405: 29-39.
[24] Xi Y H, Liu Z, Ji J, et al. Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions[J]. J Membr Sci, 2018, 550: 208-218.
[25] Wang L, Boutilier M S H, Kidambi P R, et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes[J]. Nat Nanotechnol, 2017, 12(6): 509.
[26] Zhang H, Hou J, Hu Y, et al. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores[J]. Sci Adv, 2018, 4(2): eaaq0066.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号