Position:Home >> Abstract

Effects of monoethanolamine and carbon dioxide on morphology and performance of polyamide thin-film composite membrane
Authors: LIU Weiliang,MA Xiaohua
Units: State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Laboratory, Chemical Engineering Research Center, East China University of Science and Technology, Shanghai 200237, China
KeyWords: membrane; carbon dioxide; interfacial polymerization; acid absorbent; monoethanolamine; desalination
ClassificationCode:TQ 316.4
year,volume(issue):pagination: 2020,40(6):1-6

Abstract:
 Polyamide (PA) reverse osmosis (RO) thin-film composite (TFC) membranes dominate the market of RO membrane. The separation performance of the RO TFC membrane is mainly determined by the structure and property of the PA separation layer. In this paper, a nanofoaming method was used to adjust the micro-nano structure of the PA separation layer. By adding monoethanolamine (MEA) to the aqueous phase to adjust the solubility of carbon dioxide, the morphology of the PA separation layer was adjusted. The effect of the amount of MEA on the structure and performance of RO membrane was investigated. The surface morphology and separation performance of the RO membrane were characterized by scanning electron microscope, dynamic contact angle tester, fourier infrared spectroscopy and filtering experiments. The results showed that the addition of a certain amount of MEA can effectively change the surface morphology of the membrane, affect its surface properties and improve the separation performance.


Funds:
国家自然科学基金项目(21978081

AuthorIntro:
刘伟良(1995-),男,上海,硕士研究生,研究方向:反渗透膜的制备与改性,E-mail:bc1995lwl@foxmail.com

Reference:
[1] Hermans S, Bernstein R, Volodin A, et al. Study of synthesis parameters and active layer morphology of interfacially polymerized polyamide-polysulfone membranes[J]. Reactive and Functional Polymers, 2015, 86: 199-208.
[2] Lau W J, Gray S, Matsuura T, et al. A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches[J]. Water Research, 2015, 80: 306-324.
[3] Lee K P, Arnot T C, Mattia D. A review of reverse osmosis membrane materials for desalination-Development to date and future potential[J]. Journal of Membrane Science, 2011, 370(1-2): 1-22.
[4] Ghosh A K, Jeong B H, Huang X, et al. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties[J]. Journal of Membrane Science, 2008, 311(1-2): 34-45.
[5] Xu J, Yan H, Zhang Y, et al. The morphology of fully-aromatic polyamide separation layer and its relationship with separation performance of TFC membranes[J]. Journal of Membrane Science, 2017, 541: 174-188.
[6] Kamada T, Ohara T, Shintani T, et al. Controlled surface morphology of polyamide membranes via the addition of co-solvent for improved permeate flux[J]. Journal of Membrane Science, 2014, 467: 303-312.
[7] Freger V. Kinetics of film formation by interfacial polycondensation[J]. Langmuir, 2005, 21(5): 1884-1894.
[8] Khorshidi B, Thundat T, Pernitsky D, et al. A parametric study on the synergistic impacts of chemical additives on permeation properties of thin film composite polyamide membrane[J]. Journal of Membrane Science, 2017, 535: 248-257.
[9] Al-Hobaib A S, Alsuhybani M S, Al-Sheetan K M, et al. Reverse osmosis membranes prepared by interfacial polymerization in n-heptane containing different co-solvents[J]. Desalination And Water Treatment, 2016, 57(36): 16733-16744.
[10] Khorshidi B, Thundat T, Fleck B A, et al. A Novel Approach Toward Fabrication of High Performance Thin Film Composite Polyamide Membranes[J]. Scientific Reports, 6: 22069.
[11] Lind M L, Ghosh A K, Jawor A, et al. Influence of Zeolite Crystal Size on Zeolite-Polyamide Thin Film Nanocomposite Membranes[J]. Langmuir, 2009, 25(17): 10139-10145.
[12] Peng L E, Yao Z K, Liu X, et al. Tailoring Polyamide Rejection Layer with Aqueous Carbonate Chemistry for Enhanced Membrane Separation: Mechanistic Insights, Chemistry-Structure-Property Relationship, and Environmental Implications[J]. Environmental Science & Technology, 2019, 53(16): 9764-9770.
[13] Ma X, Yang Z, Yao Z, et al. Tuning roughness features of thin film composite polyamide membranes for simultaneously enhanced permeability, selectivity and anti-fouling performance[J]. J Colloid Interface Sci, 2019, 540: 382-388.
[14] Ben U, Z. R G. Temperature measurement of the reaction zone during polyamide film formation by interfacial polymerization[J]. Journal of Membrane Science, 2018,566:329-335.
[15] 李清方, 陆诗建, 张建, et al. 搅拌法对TEA溶液吸收和解吸CO_2的实验研究[J]. 陕西科技大学学报(自然科学版), 2009, 27(04): 48-51.
[16] 杨洁, 严晋跃, 于新海, et al. 基于醇胺+[bmim][BF_4]+H_2O溶液的CO_2捕捉工艺[J]. 华东理工大学学报(自然科学版), 2013, 39(06): 641-647.
[17] Ma X H, Yao Z, Yang Z, et al. Nano-foaming of Polyamide Desalination Membranes to Tune Permeability and Selectivity[J]. Environmental Science & Technology Letters, 2018, 5(2):123-130.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号