Position:Home >> Abstract

Gelation kinetics of a Copoly(phthalazinone biphenyl ether sulfone) membrane via immersion precipitation
Authors: WANG Xu, ZHANG Shouhai, ZHANG Yingnan, XU Peiqi, LIU Qian, JIAN Xigao
Units: College of chemical engineering, Dalian University of Technology, Liaoning High Performance Polymer Engineering Research Center, Liaoning Key Laboratory of Polymer Science and Engineering, Dalian Key Laboratory of Membrane Materials and Process, Dalian 116024, China
KeyWords: Copoly(phthalazinone biphenyl ether sulfone); Gelation kinetics; Immersion precipitation; Rheological property
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2022,42(5):1-7

Abstract:
 The gelation kinetic process of asymmetric PPBES membrane prepared by immersion precipitation method was investigated through using copoly(phthalazinone biphenyl ether sulfone) (PPBES) as polymer, polyvinyl pyrrolidone (PVP) as additive and N,N- Dimethylacetamide (DMAc) as solvent. The gelation structure of PPBES/PVP/DMAc system was observed by 3D digital microscope, and the formation kinetics factor (De) was calculated to characterize the gelation speed. Effects of PPBES and PVP concentrations and DMAc content in coagulant on the speed and structure were investigated. The relationship between the apparent viscosity of casting solution and the concentration of PPBES/PVP as well as the effect of viscous flow activation energy on De were investigated by digital viscometer. When PPBES concentration increased, De decreased from 10633 μm2/s down to 4599 μm2/s, gelation speed decreased, and the finger-like macropores gradually disappeared. When the PVP content increased, gelation speed first increased and then decreased, resulting in the change fo gelation structure from finger-like pore to sponge-like pore. The gelation speed decreased with an increase of DMAc content in gelation medium. The apparent viscosity was positively correlated with the concentration of PPBES and PVP. The viscous flow activation energy increased with the increase of PPBES concentration, resulting in the reduction of De.

Funds:
国家自然科学基金委创新研究群体项目(22021005),大连市高层次人才创新支持计划(2019RD08)。

AuthorIntro:
王旭(1998-),男,山东德州市人,硕士,从事杂萘联苯聚醚砜中空纤维膜的研究

Reference:
 [1]刘鹏. 杂萘联苯共聚醚砜复合正渗透中空纤维膜研究[D]. 大连理工大学, 2017.
[2]Han R, Zhang S, Yang D, et al. Preparation and characterization of novel copoly (phthalazinone ether sulfone) ultrafiltration membranes with excellent thermal stability[J]. J Membr Sci, 2010, 358(1-2): 142-149.
[3]张守海,王雨田,杨大令,等. 杂萘联苯共聚醚砜中空纤维超滤膜的制备[J]. 水处理技术, 2013, 39(03): 32-34.
[4]步肖曼,张守海,薛仁东,等. 聚醚砜与杂萘联苯共聚醚砜共混超滤膜的制备[J]. 膜科学与技术, 2018, 38(06): 56-62.
[5]徐象贤,张守海,刘乾,等. 杂萘联苯共聚醚砜血液透析膜的制备与性能[J]. 膜科学与技术,2020, 40(05): 1-8.
[6]俞三传,高从堦. 浸入沉淀相转化法制膜[J]. 膜科学与技术, 2000, 20(5): 36-41.
[7]张玉. 使用单孔喷丝头通过NIPS结合气体生成制备中空纤维膜[D]. 天津工业大学, 2017.
[8]Strathmann H, Kock K. The formation mechanism of phase inversion membranes[J]. Desalination, 1977, 21(3): 241-255. 
[9]Strathmann H, Kock K, Amar P, et al. The formation mechanism of asymmetric membranes[J]. Desalination, 1975, 16(2): 179-203.
[10]蒋炜, 江成璋. 聚乙烯吡咯烷酮添加剂对聚醚砜制膜体系的影响[J]. 水处理技术, 1996, 2: 5-9.
[11]Qin P, Chen C, Yun Y, et al. Formation kinetics of a polyphthalazine ether sulfone ketone membrane via phase inversion[J]. Desalination, 2006, 188(1-3), 229-237.
[12]魏永明,许振良,杨晓天. 非溶剂对成膜过程凝胶速率的影响[J]. 膜科学与技术, 2006, 5: 37-41.
[13]李磊,孙伟娜,陈翠仙,等. 杂萘联苯聚芳醚酮超滤膜的铸膜液配方研究[J]. 化学工程, 2009, 37(05): 42-45.
[14]Li T, Liu F, Lin H, et al, Fabrication of anti-fouling, anti-bacterial and non-clotting PVDF membranes through one step “outside-in” interface segregation strategy[J]. J Colloid Interf Sci, 2018, 517: 93-103.
[15]王双双,沈惠玲. 壳聚糖对聚氨酯成膜动力学及膜性能的影响[J]. 塑料科技, 2018, 46(11): 20-24.
[16]王艳,沈惠玲. 相转化法制备聚氨酯/高纯铜粉微孔膜及性能研究[J]. 塑料科技, 2020, 48(04): 43-47.
[17]Huang T, Song J, He S, et al. Enabling sustainable green close-loop membrane lithium extraction by acid and solvent resistant poly (ether ether ketone) membrane[J]. J Membr Sci, 2019, 589. 117273.
[18]Wang Z, Fu Z, Shao D, et al. Bridging the miscibility gap to fabricate delamination-free dual-layer nanofiltration membranes via incorporating fluoro substituted aromatic amine[J]. J Membr Sci, 2020, 610. 118270.
[19]Young T, Chen L. Roles of bimolecular interaction and relative diffusion rate in membrane structure control[J]. J Membr Sci, 1991, 83(2): 153-166. 
[20]程亮,许振良,魏永明,等. 芯液组成对PVC-PFSA中空纤维共混膜性能的影响[J]. 膜科学与技术, 2011, 31(01): 72-76.
[21]赵晓勇,曾一鸣,施艳荞,等. 相转化法制备超滤和微滤膜的孔结构控制[J]. 功能高分子学报, 2002, 04: 487-495.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号