Position:Home >> Abstract

Investigation on the process of shipborne medical purity oxygen production with polyimide membrane
Authors: ZHAO Shuai,ZHAO Qi,WANG Changchun,WANG Lina, LIU Ming,JIE Xingming,LIU Jianhui,XU Guohui, KANG Guodong,CAO Yiming
Units: School of Materials Science and Engineering,Dalian Jiaotong University,Dalian 116028,China;2.Dalian Institute of Chemical Physics,Chinese Academy of Science,Dalian 116023,China
KeyWords: polyimide;hollow fiber membrane;membrane separation;high purity oxygen;process optimization
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2023,43(2):10-16

Abstract:
 Hollow fiber membranes were prepared by using laboratory-made polyimide and commercial polyetherimide as raw materials. O2/Ar mixtures with four variable oxygen concentrations of 95%, 96.5%, 98% and 98.5% were used as feed gas to test the oxygen-enrichment process. The effects of parameters such as membrane separation factor, inlet pressure, feed gas concentration, vent flow ratio and membrane separator length on the separation effect of high-purity oxygen production were systematically investigated at room temperature and a two-stage membrane circulation system for simulation comparison was designed based on the test results. The experimental results show that the separation factor of the membrane fundamentally determines the oxygen-enriching effect; increasing the intake pressure will improve the oxygen-enriching performance of the membrane within a certain range, and at the same time increase the treatment capacity of the mixed gas; for the feed gas with different oxygen concentrations, higher the oxygen concentration in the feed gas is, greater the permeation rate of the membrane will be; increasing the vent flow ratio is beneficial to increase the concentration of oxygen-enriched gas on the permeate side; the optimization of the length of the membrane separator also has a certain impact on the membrane separation performance. These results reveal the influence of relevant parameters on the separation process of oxygen and argon, and verify the feasibility of using polyimide hollow fiber membranes to prepare medical high-purity oxygen that meets national medical standards.

Funds:
中国科学院大连化学物理研究所创新研究基金项目(DICP I202010;DICP I202033);自然科学基金(21878284;22178333);中国科学院洁净能源创新研究院合作基金(DNL 180202)

AuthorIntro:
赵 帅(1998-),男,辽宁朝阳人,硕士生,研究方向为气体膜分离,E-mail:zhaoxh@dicp.ac.cn.

Reference:
 [1]刘维国, 赵远征, 刘辉. 舰船氧、氮气体分离技术现状与展望[J]. 中国舰船研究, 2012, 7(02): 102-107.
[2]杨顺成. 膜法空分制氮与富氧技术在舰船上的应用与前景[J]. 舰船科学技术, 2004, (03): 63-65.
[3]李宝林, 李博诚. 我国医用氧气及分子筛制氧设备监管要求和对策[J]. 中国医药导报, 2014, 11(26): 118-121.
[4]郑卫东, 于开录, 李海平, 等. 水面舰船氮氧制备技术与装备[J]. 舰船科学技术, 2013, 35(07): 134-140+153.
[5]徐徜徉, 曹义鸣, 赵勇, 等. 膜分离技术与变压吸附技术结合制取高浓度氧的研究[C]// 第二届全国传递过程学术研讨会论文集. 2003: 148-151.
[6]孔华. 膜和分子筛联合制氧方法研究[D]. 西北工业大学, 2007.
[7]Santos J C, Cruz P, Regala T, et al. High-Purity Oxygen Production by Pressure Swing Adsorption[J]. Ind.eng.chem.res, 2003, 46(2): 591-599.
[8]Tsuru T, Hwang S T. Production of high-purity oxygen by continuous membrane column combined with PSA oxygen generator[J]. Industrial & Engineering Chemistry Research, 1994, 33(2): 311-316.
[9]Baker R W. Future directions of membrane gas-separation technology[J]. Ind. Eng. Chem. Res, 2002, 41(138): 5-10.
[10]祁喜旺, 陈翠仙, 蒋维钧. 聚酰亚胺气体分离膜[J]. 膜科学与技术, 1996, (02): 2-8.
[11]刘京京, 张亚彬, 杜雄飞. 硅橡胶—玻璃中空纤维富氧膜的制备[J]. 玻璃, 2019, 46(01): 7-11.
[12]Robeson L M. Correlation of separation factor versus permeability for polymeric membranes[J]. 1991, 62(2): 165-185.
[13]Valappil R, Ghasem N, Al-Marzouqi M. Current and future trends in polymer membrane-based gas separation technology: A comprehensive review[J]. Industrial and Engineering Chemistry, 2021, 98: 103-129.
[14]田波. 气相色谱法在室温下分析氧和氩[J]. 低温与特气, 1997, (02): 48-50.
[15]张志军, 姚奎, 梁玉环, 等. 在线磁氧法和色谱法在测定氧化尾气时的比较[J]. 广州化工, 2014, 42(21): 138-140.
[16]张旭. 中空纤维气体分离复合膜的涂覆工艺与性能研究[D]. 北京化工大学, 2020.
[17]LM Gandía, Arzamendi G, PM Diéguez. Renewable Hydrogen Technologies. Production, Purification, Storage, Applications and Safety[M]. Elsevier Science, 2013.
[18]Freeman B D. Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes[J]. Macromolecules, 1999, 32(2): 375-380.
[19]Takeuchi H, A jump motion of small molecules in glassy polymers: A molecular dynamics simulation[J]. Chemical Physics, 1990, 93(03): 2062-2067.
[20]葛昕, 李晖, 李布青, 等. 聚酰亚胺中空纤维膜分离CH4/CO2的影响因素分析[J]. 中国沼气, 2017, 35(01): 13-16.
[21]韩鲁佳, 黄之栋, 崔引安. 中空纤维膜组件富氮特性的实验研究[J]. 北京农业工程大学学报, 1990, 10(01): 47-54.
[22]张春威, 杨博, 李鹤, 等. 聚酰亚胺中空纤维膜对油田伴生气中二氧化碳分离性能的研究[J]. 膜科学与技术, 2018, 38(04): 93-98+106.
[23]Baker R W. Membrane Technology and Applications[M]. New York: McGraw-Hill, 2000.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号