抗菌膜表面的构建:现状与挑战
作者:徐志康,王  芳,仰云峰
单位: 浙江大学高分子科学与工程学系,高分子合成与功能构造教育部重点实验室, 杭州310027
关键词: 膜表面工程;抗菌性能;聚丙烯微滤膜;聚丙烯腈超滤膜;接枝聚合
出版年,卷(期):页码: 2011,31(3):69-75

摘要:
总结国内外和本课题组在抗菌膜表面的构建、抗菌机理、应用前景等方面的研究进展和现状,探讨潜在的问题与挑战。
Membranes with antibacterial properties were reviewed in this article. We focus on the methods for the construction of antibacterial membrane surfaces, the antibacterial mechanism of the membrane surfaces, and the potential applications of these membranes. The perspectives and challenges of membranes with antibacterial properties are also suggested.
徐志康(1963?),浙江长兴人,二级教授,研究方向:聚合物分离膜的表面工程, 邮箱:xuzk@zju.edu.cn

参考文献:
[1] Kingshott P, Wei J, Bagge-Ravn D, et al. Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion[J]. Langmuir, 2003, 19: 6912-6921
[2] Roosjen A, van der Mei H C, Busscher H J, et al. Microbial adhesion to poly(ethylene oxide) brushes: Influence of polymer chain length and temperature[J]. Langmuir, 2004, 20: 10949-10955.
[3] Roosjen A, de Vries J, van der Mei H C, et al. Stability and effectiveness against bacterial adhesion of poly(ethylene oxide) coatings in biological fluids[J]. J Biomed Mater Res Part B-Appl Biomater, 2005, 73B: 347-354.
[4] Lewis A L. Phosphorylcholine-based polymers and their use in the prevention of biofouling[J]. Colloids and Surf B-Biointerf, 2000, 18: 261-275.
[5] Hirota K, Murakami K, Nemoto K, et al. Coating of a surface with 2-methacryloyloxyethyl Phosphorylcholine (MPC) co-polymer significantly reduces retention of human pathogenic microorganisms[J]. Fems Microb Lett, 2005, 248: 37-45.
[6] Cheng G, Li G Z, Xue H, Chen S F, et al. Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation[J]. Biomaterials, 2009, 30: 5234-5240.
[7] G. Cheng, Zhang Z, Chen S F, et al. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces[J]. Biomaterials, 2007, 28: 4192-4199.
[8] Li G Z, Cheng G, Xue H, et al. Ultra low fouling zwitterionic polymers with a biomimetic adhesive group[J]. Biomaterials, 2008, 29: 4592-4597.
[9] Yang Y F, Li Y, Li Q L, et al. Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling[J]. J Membr Sci, 2010, 362: 255-264.
[10] Aymonier C, Schlotterbeck U, Antonietti L, et al. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties[J]. Chem Commun, 2002, 3018-3019.
[11] Kumar A, Vemula P K, Ajayan P M, et al. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil[J]. Nature Mater, 2008, 7: 236-241.
[12] Isquith A J, Abbott E A, Walters P A. Surface-bonded antimicrobial activity of an organosilicon quaternary ammonium chloride[J]. Appl Microb, 1972, 24: 859-863.
[13] Walters P A, Abbott E A, Isquith A J. Algicidal activity of a surface-bonded organosilicon quaternary ammonium chloride[J]. Appl Microb, 1973, 25: 253-256.
[14] Gottenbos B, van der Mei H C, Klatter F, et al. In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber[J]. Biomaterials, 2002, 23: 1417-1423.
[15] Andresen M, Stenstad P, Moretro T, et al. Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose[J]. Biomacromolecules, 2007, 8: 2149-2155.
[16] Bae W S, Urban M W, Reactions of antimicrobial species to imidazole-microwave plasma reacted poly(dimethylsiloxane) surfaces[J]. Langmuir, 2004, 20: 8372-8378.
[17] Aumsuwan N, Heinhorst S, Urban M W. Antibacterial surfaces on expanded polytetrafluoroethylene; penicillin attachment[J]. Biomacromolecules, 2007, 8: 713-718.
[18] Aumsuwan N, Heinhorst S, Urban M W. The effectiveness of antibiotic activity of penicillin attached to expanded poly(tetrafluoroethylene) (ePTFE) surfaces: A quantitative assessment[J]. Biomacromolecules, 2007, 8: 3525-3530.
[19] James N R, Jayakrishnan J A. Surface thiocyanation of plasticized poly(vinyl chloride) and its effect on bacterial adhesion[J]. Biomaterials, 2003, 24: 2205-2212.
[20] Zhang W, Chu P K, Ji J H, et al. Plasma surface modification of poly vinyl chloride for improvement of antibacterial properties[J]. Biomaterials, 2006, 27: 44-51.
[21] Kenawy E R, Worley S D, Broughton R. The chemistry and applications of antimicrobial polymers: A state-of-the-art review[J]. Biomacromolecules, 2007, 8: 1359-1384.
[22] Tashiro T. Antibacterial and bacterium adsorbing macromolecules[J]. Macromol Mater Eng, 2001, 286: 63-87.
[23] Lin J, Qiu S Y, Lewis K, et al. Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine[J]. Biotechnol Bioeng, 2003, 83: 168-172.
[24] Milovic N M, Wang J, Lewis K, et al. Immobilized N-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed[J]. Biotechnol Bioeng, 2005, 90: 715-722.
[25] Tiller J C, Lee S B, Lewis K, et al. Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria[J]. Biotechnol Bioeng, 2002, 79: 465-471.
[26] Lin J, Tiller J C, Lee S B, et al. Insights into bactericidal action of surface-attached poly(vinyl-N-hexylpyridinium) chains[J]. Biotechnol Lett, 2002, 24: 801-805.
[27] Cen L, Neoh K G, Kang E T. Surface functionalization technique for conferring antibacterial properties to polymeric and cellulosic surfaces[J]. Langmuir, 2003, 19: 10295-10303.
[28] Shi Z L, Neoh K G, Kang E T. Antibacterial activity of polymeric substrate with surface grafted viologen moieties[J]. Biomaterials, 2005, 26: 501-508.
[29] Hilal N, Kochkodan V, Al-Khatib L, et al. Surface modified polymeric membranes to reduce (bio)fouling: a microbiological study using E. Coli[J]. Desalination, 2004, 167: 293-300.
[30] Ma H M, Bowman C N, Davis R H. Membrane fouling reduction by backpulsing and surface modification[J]. J Membr Sci, 2000, 173: 191-200.
[31] Lee S B, Koepsel R R, Morley S W, et al. Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization[J]. Biomacromolecules, 2004, 5: 877-882.
[32] Zhai G Q, Shi Z L, Kang E T, et al. Surface-initiated atom transfer radical polymerization on poly(vinylidene fluoride) membrane for antibacterial ability[J]. Macromol Biosci, 2005, 5: 974-982.
[33] Voccia S, Ignatova M, Jerome R, et al. Design of antibacterial surfaces by a combination of electrochemistry and controlled radical polymerization[J]. Langmuir, 2006, 22: 8607-8613.
[34] Roy D, Knapp J S, Guthrie J T, et al. Antibacterial cellulose fiber via RAFT surface graft polymerization[J]. Biomacromolecules, 2008, 9: 91-99.
[35] Park D, Wang J, Klibanov A M. One-step, painting-like coating procedures to make surfaces highly and permanently bactericidal[J]. Biotechnol Prog, 2006, 22: 584-589.
[36] Klibanov A M. Permanently microbicidal materials coatings[J]. J Mater Chem, 2007, 17: 2479-2482.
[37] Lenoir S, Pagnoulle C, Detrembleur C, et al. Antimicrobial activity of polystyrene particles coated by photo-crosslinked block copolymers containing a biocidal polymethacrylate block[J]. E-Polymers, 2005, 11: 74-81.
[38] Fuchs A D, Tiller J C. Contact-active antimicrobial coatings derived from aqueous suspensions[J]. Angew Chem-Int Ed, 2006, 45: 6759-6762.
[39] Martin T P, Kooi S E, Chang S H, et al. Initiated chemical vapor deposition of antimicrobial polymer coatings[J]. Biomaterials, 2007, 28: 909-915.
[40] Bratskaya S, Marinin D, Simon F, et al. Adhesion and viability of two enterococcal strains on covalently grafted chitosan and chitosan/kappa- carrageenan multilayers[J]. Biomacromolecules, 2007, 8: 2960-2968.
[41] Elsabee M Z, Abdou E S, Nagy K S A, et al. Surface modification of polypropylene films by chitosan and chitosan/pectin multilayer[J]. Carbohyd Polym, 2008, 71: 187-195.
[42] Yang Y F, Hu H Q, Li Y, Wan L S, Xu Z K.. Membrane surface with antibacterial property by grafting polycation[J]. J Membr Sci, 2011, in press (http://dx.doi.org/10.1016/j.memsci.2011.04.012).
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号