抗污染膜表面构建的研究进展
作者:姜忠义1,陈文娟1,苏延磊1
单位: 1天津大学化工学院,绿色合成与转化教育部重点实验室,天津 300072
关键词: 抗污染;表面构建;表面偏析
出版年,卷(期):页码: 2011,31(3):64-68

摘要:
膜污染被公认为是限制膜技术在环保、生物、医药、食品以及废水处理等工业领域广泛应用的最大瓶颈。本文主要综述了目前应用广泛的抗污染表面的构建方法,其中包括表面涂覆法,表面接枝法及表面偏析法。重点介绍了此三种方法的基本原理、研究现状以及存在的问题,在此基础上对抗污染表面构建方法的发展前景进行了分析。
Membrane fouling constitutes a bottleneck limiting the wide application of membrane filtration technology in the environmental protection, biological pharmaceutical, food processing and water treatment industries. In this paper, the widely explored methods for constructing antifouling surfaces were reviewed, including the surface coating, surface grafting, surface segregation technologies. The corresponding principles, current research situation and the problems were mainly introduced, and then developing prospects of the antifouling surface construction methods were also explored.
作者简介:姜忠义(1966-),河北黄骅人,研究方向为膜和膜过程、酶催化。电话:022-23500086,E-mail:zhyjiang@tju.edu.cn。通讯地址:天津市南开区卫津路92号天南大联合实验楼B座602

参考文献:

[1]       Koros W J, Ma Y H, Shimizu T. Terminology for membranes and membrane processes- IUPAC recommendations [J]. Journal of Membrane Science, 1996, 120: 149-159.
[2]       Abdolhamid S, Mohsen A Toraj M. Permeate flux decline during UF of oily wastewater: Experimental and modeling [J]. Desalination, 2010, 251: 153-160.
[3]       Rana D., Matsuura T. Surface Modifications for Antifouling Membranes. Chemical Reviews, 2010, 110: 2448-2471.
[4]       McCloskey B D, Ju H, Freeman B D. Composite Membranes Based on a Selective Chitosan-Poly(ethylene glycol) Hybrid Layer: Synthesis, Characterization, and Performance in Oil-Water Purification[J]. Industrial & Engineering Chemistry Research, 2010, 49: 366-373.
[5]       J Wei, GS Helm, N Corner-Walker, X Hou, Characterization of a non-fouling of ultrafiltration membranes, Desalination, 2006, 192:252-261
[6]       Harris L.G.., Tosatti S., Wieland M., Textor M., Richards R.G.,   Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted- poly(ethylene glycol) copolymers, Biomaterials, 2004, 25: 4135-4148
[7]       Lemarchand C., Gref R., Passirani C., Garcion E., Petri B., Mu?ller R., Costantini D., Couvreur P., Influence of polysaccharide coating on the interactions of nanoparticles with biological systems, Biomaterials, 2006, 27: 108-118 
[8]       Beyer M., Felgenhauer T., Ralf Bischoff F., Breitling F., Stadler V A , novel glass slide-based peptide array support with high functionality resisting non-specific protein adsorption,, Biomaterials, 2006, 27: 3505-3514.
[9]       Düputell D., Staude E., Heterogeneous modification of ultrafiltration membranes made from poly(vinylidene fluoride) and their characterization, Journal of Membrane Science, 1993, 78: 45-51
[10]    Bryjak M., Hodge H., Dach B.,Modification of porous polyacrylonitrile membrane,Angewandte Makromolekulare Chemie, 1998, 260: 25-29
[11]    Alvarez S., García A., Manolache S., Denes F., Rier F.A., Álvarez R., Plasma-enhanced modification of the pore size of ceramic membranes, Desalination, 2005, 184: 99-104
[12]    Ulbricht M., Advanced functional polymer membranes, Polymer, 2006, 47: 2217–2262
[13]    Advanced Materials, Hucknall A, Rangarajan S, Chilkoti A., In Pursuit of Zero: Polymer Brushes that Resist the Adsorption of Proteins, 2009, 21:2441-2446
[14]    Andrea R. S., Robert J. A., Messersmith P. B., New Peptidomimetic Polymers for Antifouling Surfaces, Journal of American Chemistry Soceity, 2005, 127:7972–7973
[15]    Xu F.J., Zhao J.P., Kang E.T., Neoh K.G., Li J., Functionalization of nylon membranes via surface-initiated atom-transfer radical polymerization, Langmuir, 2007, 23: 8585-8592
[16]    Park Y., Acar M.H., Akthakul A., Kuhlman W., Mayes A.M., Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes, Biomaterials, 2006, 27; 856-865
[17]    Taniguchi I., Kuhlman W.A., Griffith L.G., Mayes A.M., Macromonomer purification strategy for well-defined polymer amphiphiles incorporating poly(ethylene glycol) monomethacrylate, Macromol. Rapid Commun., 2006, 27:631-636
[18]    Kuhlman W.A., Olivetti E.A., Griffith L.G., Mayes A.M., Chain conformations at the surface of a polydisperse amphiphilic comb copolymer film, Macromolecules, 2006, 39:5122-5126
[19]    Hester J.F., Mayes A.M., Design and performance of foul-resistant poly(vinylidene fluoride) membranes prepared in a single step by surface segregation, Journal of Membrane Science, 2002, 202:119-135
[20]    Wang Y.Q., Wang T., Su Y.L., Peng F.B., Wu H., Jiang Z.Y., Remarkable reduction of irreversible fouling and improvement of the permeation properties of poly(ether sulfone) ultrafiltration membranes by blending with Pluronic F127, Langmuir, 2005, 21:11856-11862
[21]    Zhao W., Su Y.L., Li C., Shi Q., Ning X., Jiang Z.Y., Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent, Journal of Membrane Science, 2008, 318:405-412
[22]    Wang Y.Q., Su Y.L., Sun Q., Ma X.L., Jiang Z.Y., Generation of anti-biofouling ultrafiltration membrane surface by blending novel branched amphiphilic polymers with polyethersulfone, Journal of Membrane Science, 2006, 286:228-236
[23]    Wang Y.Q., Su Y.L., Ma X.L., Sun Q., Jiang Z.Y., Pluronic polymers and polyethersulfone blend membranes with improved fouling-resistant ability and ultrafiltration performance, Journal of Membrane Science, 2006, 283: 440-447
[24]    Lv C.L., Su Y.L., Wang Y.Q., Ma X.L., Sun Q., Jiang Z.Y., Enhanced permeation performance of cellulose acetate ultrafiltration membrane by incorporation of Pluronic F127, Journal of Membrane Science, 2007, 294: 68-74
[25]    Shi Q., Ye S.J., Kristalyn C., Su Y.L., Jiang Z.Y., Chen Z., Probing molecular-level surface structures of polyethersulfone/Pluronic F127 blends using sum-frequency generation vibrational spectroscopy. Langmuir 2008, 24:7939-7946.
[26]    徐又一,章帆,朱利平,王建宇,两亲性共聚物与PVDF共混合金膜的结构控制与表面自组装行为。膜科学与技术 2008, 2:1-8
[27]    Peinemann K.V., Abetz V., Simon P. F. W., Asymmetric superstructure formed in a block copolymer via phase separation, Nature Materials, 2007, 6:992-996.
[28]    Schacher F., Ulbricht M., Müller A. H. E., Self-Supporting, Double Stimuli-Responsive Porous Membranes From Polystyrene-block-poly(N,N-dimethylaminoethyl methacrylate) Diblock Copolymers, Advanced Functional Materials, 2009, 19:1040-1045
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号