壳聚糖/碳纳米管杂化膜的制备及其乙醇/水体系的渗透汽化分离
作者:施国忠1,吴礼光2,邱实1,张林1,陈欢林1,高丛堦13
单位: 1浙江大学化学工程与生物工程学系,杭州 310027;2浙江工商大学环境科学与工程学院,杭州 310012;1,3国家液体分离膜工程技术研究中心,杭州 310012
关键词: 多壁碳纳米管,壳聚糖,杂化膜,渗透汽化,乙醇/水体系
出版年,卷(期):页码: 2011,31(4):54-59

摘要:
多壁碳纳米管(MWNT)经硫酸/硝酸混酸处理后,获得的羧基化多壁碳纳米管通过溶液共混制备了羧基化多壁碳纳米管/壳聚糖(MWNT-COOH/CS)杂化膜,用于乙醇/水体系的渗透汽化脱水。采用FTIR、TEM等表征了混酸处理前后的多壁碳纳米管及杂化膜的结构,实验测定了杂化膜在乙醇/水溶液中的溶胀吸附行为及其对乙醇/水体系的渗透汽化性能。结果表明:(1)多壁碳纳米管经混酸处理后在杂化膜中的分散性大大改善;(2)和乙醇相比,杂化膜对水具有优先吸附、溶胀特征,且随MWNT-COOH填充量的增加,杂化膜在乙醇/水溶液中的平衡溶胀度增大,水和乙醇在杂化膜中的扩散系数增大;(3) 对于90wt%的乙醇/水体系,杂化膜表现出较好的渗透汽化脱水性能,杂化膜的渗透通量随MWNT-COOH填充量的增加而增大,而分离因子略有下降。
multi-walled carbon nanotube(MWNT) was modified by H2SO4/HNO3 mixture and then loaded into chitosan(CS) to prepare MWNT-COOH/CS hybrid membrane for pervaporation dehydration of ethanol/water mixtures. The structure of MWNT、MWNT-COOH and hybrid membrane were characterized by transmission electron microscopy(TEM) and FTIR, and the results show that the modification of MWNT promoted the dispersion of MWNT-COOH in the membrane matrix. The diffusion coefficient of water in the hybrid membrane was higher than that of ethanol, diffusion selectivity(αD,w/e) and solubility selectivity(αS,w/e) increased with the increasing MWNT-COOH content in the membrane matrix based on the sorption experiment. For pervaporation of 90wt% ethanol/water mixtures, the permeation flux of the hybrid membrane increased, selectivity (αw/e) slightly decreased with the increasing MWNT-COOH content in the membrane matrix.
施国忠(1985-),男,浙江湖州人,硕士研究生,主要从事渗透汽化膜研究. *通讯联系人

参考文献:
[1] Neel J, Huang R Y M (Ed.). Introduction to Pervaporation, Pervaporation Membrane Separation Process[M]. Elsevier, Amsterdam, 1991 (Chapter 1).
[2] Matsui S, Mizoguchi K. Membrane Separation Recent Trend. Bunri Gijutsu, 2002, 32:105-110.
[3] Gozzelino G. Pervaporation of methanol/methyl-t-Butyl ether mixtures through poly(vinyl alcoho1)/poly(acrylic acid) blend membranes[J]. Sep. Sci. Technol., 2005, 40(11): 2265-2276.
[4] Madandar A, Mohammadi T. Effect of permeate pressure on pervaporation of methyl tert-butyl ether/methanol mixtures[J]. Desalination, 2006, 200(1-3): 390-392.
[5] Rhim J W, Kim Y K. Pervaporation separation of MTBE-methanol mixtures using cross-linked PVA membranes[J]. J. Appl. Polym. Sci., 2000, 75(14): 1699-1707.
[6] Kim S G, Kim Y I, Lim G T, etal. Polyion complex composite membranes for the separation of methyl t-butyl ether/methanol mixtures: separation behaviors of these membrane[J]. J. Appl. Polym. Sci., 2002, 85(9): 1832-1842.
[7] Kim S G, Kim Y I, Jegal J, etal. Characterization and preparation of polyion complex composite membranes for the separation of methyl tert-butyl ether/methanol mixtures[J]. J. Appl. Polym. Sci., 2002, 85(4): 714-725.
[8] Cao S G, Shi Y Q, Chen G W. Properties and pervaporation characteristics of chitosan-poly(N-vinyl-2-pyrrofidone) blend membranes for MeOH-MTBE[J]. J. Appl. Polym. Sci., 1999, 74(6): 1452-1458.
[9] Nam S Y, Lee Y M. Pervaporation Separation of methanol/methyl t-butyl ether through chitosan composite membrane modified with surfactants[J]. J. Membr. Sci., 1999, 157(1): 63-71.
[10] Kim S G, Lim G T, Jegal J, etal. Pervaporation separation of MTBE (methyl tert-butyl ether) and methanol mixtures through polyion complex composite membranes consisting of sodium alginate/chitosan[J]. J. Membr. Sci., 2000, 174(1): 1-15.
[11] Jeong B H, Hoek E M , Yan Y S, etal. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes[J], J. Membr. Sci., 2007, 294: 1-7.
[12] Peng, F B, Hu C L, Jiang Z Y. Novel ploy (vinyl alcohol)/carbon nanotube hybrid membranes for pervaporation separation of benzene/cyclohexane mixtures[J]. J. Membr. Sci., 2007, 297: 236-242.
[13] Peng F B, Pan F S, Sun H L, etal. Novel nanocomposite pervaporation membranes composed of poly(vinyl alcohol) and chitosan-wrapped carbon nanotube[J]. J. Membr. Sci., 2007, 300: 13-19.
[14] Peng F B, Lu L Y, Hu C L, Significant increase of permeation flux and selectivity of poly(vinyl alcohol membranes by incorporation of crystalline flake graphite[J]. J. Membr. Sci., 2005, 259: 65-73.
[15] Ke G., Guan W, Tang C, etal. Covalent functionalization of multiwalled carbon nanotubes with a low molecular weight chitosan[J]. Biomacromolecules, 2007, 8: 322-326.
[16] Kandimalla V B, Ju H. Binding of acetylcholinesterase to multi-wall carbon nanotube-cross-linked chitosan composite for flow-injection amperometric detection of an organophosphorous insecticide[J]. Chemistry-A European Journal, 2006, 12: 1074-1080.
[17] Choi J H, Jegal J, Kim W N, Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes[J]. J. Membr. Sci., 2006, 284: 406-415.
[18] Joseph S, Aluru N R, Why Are Carbon Nanotubes Fast Transporters of Water? [J] Nano letter, 2008, 8: 452-458.
[19] Duval J M, Folkers B, Mulder M H V, etal. Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents[J], J. Membr. Sci., 1993, 80: 189-198.
[20] Freeman B, Pinnau I (Eds.). Fundamental and practical aspects of mixed matrix gas separation membranes, polymer membranes for gas and vapor separation[J], Proceedings of the ACS Symposium Series, 1999, pp. 277-286.
[21] Tang C Y, Zhang Q, Wang K, etal. Water transport behavior of chitosan porous membranes containing multi-walled carbon nanotubes (MWNTs) [J]. J. Membr. Sci., 2009, 337: 240-247.
[22] Hummer G, Rasaiah J C, Noworyta J P, Water conduction through the hydrophobic channel of a carbon nanotube[J], Nature. 2001, 414: 188-190.
[23] Chen H L, Wu L G., Tan J, etal. PVA membrane filled β-cyclodextrin for separation of isomeric xylenes by pervaporation[J]. Chem. Eng. J., 2000, 78: 159-164.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号