正渗透的机理
作者:方彦彦 ,田野,王晓琳
单位: 清华大学化学工程系化学工程联合国家重点实验室,北京,100084
关键词: 渗透 正渗透 渗透压 机理 膜
出版年,卷(期):页码: 2011,31(6):95-100

摘要:
正渗透技术是一种新兴的利用渗透原理的膜分离技术,能自发进行,无需外加压力即可实现,为水资源和环境问题提供了低能耗、高效率的解决途径。近年来正渗透技术在国际上得到了广泛的重视,相关的研究正快速发展。本文详细总结了正渗透机理方面的研究进展,深入分析了正渗透的整个动力学过程,为正渗透膜的设计和制备与驱动溶质的选择和开发提供了理论基础。
As a type of novel technology by using the principle of osmosis, forward osmosis can is produce a spontaneous without external pressure. which This approach provides an approach consumes very of low energy consumption and is highly efficient to for contemporary worldwide water and environment problems. Forward osmosis has recently drawn worldwide attention, and relevant studies are in burgeoning development. This review summarizes the progress of study on the mechanism of forward osmosis in detail, analyzes the whole dynamic process in depth and provides a theoretical basis for design and preparation of FO membranes and selection and development of draw solutes.
方彦彦(1987-),男,博士研究生,主要从事正渗透过程及应用研究;联系电话:62794742;E-mail:fyy04@mails.tsinghua.edu.cn,通讯作者:王晓琳,男,教授;联系电话:62794741;E-mail:xl-wang@tsingua.edu.cn

参考文献:
[1] 王晓琳,丁宁.反渗透与纳滤技术与应用[M].北京:化学工业出版社,2005.
[2] Preffer W. Osmotische Untersuchungen[M].Leipzig:Engelman, 1877.1~236
[3] Van’t Hoff J H. Une propriété général de la matière diluée[J]. Svenska Vet Akad Handl,1866,21:1~49
[4] Arrhenius S. Über die Dissociation der in Wasser gelösten Stoffe[J].Z Physik Chemie,1877,1:631~648
[5] Hamer W J,Wu Y C. Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25℃[J].J Phys Chem Ref Data,1972,1(4):1047~1099
[6] Goldberg R N, Nuttall R L. Evaluated activity and osmotic coefficients for aqueous solutions: the alkaline earth metal halides[J]. J Phys Chem Ref Data,1978,7(1):263~310
[7] Goldberg R N. Evaluated activity and osmotic coefficients for aqueous solutions:thirty-Six uni-bivalent electrolytes[J]. J Phys Chem Ref Data,1981,10(3):671~764
[8] Hammel HT. Colligative properties of a solution[J]. Science, 1976, 192:748~756
[9] Kiil F. Molecular mechanisms of osmosis[J]. Am J Physiol, 1989, 256(4):R801~R808
[10] Cath T Y, Childress A E, Elimelech M. Forward osmosis: Principles, applications, and recent developments[J].Journal of membrane science, 2006, 281(1-2): 70~87
[11] Van’t Hoff JH. Die Rolle des osmotischen Druckes in der analogie zwischen lösungen und gasen[J].Z Physik Chemie, 1887,1:481~508
[12] Kiil F. Mechanism of osmosis[J]. Kidney International,1982,21(2):303~308
[13] Kiil F. Kinetic model of osmosis through semipermeable and solute-permeable membranes[J]. Acta Physiol Scand,2003,177:107~117
[14] Soodak H and Iberall A. Osmosis, diffusion, convection[J]. Am J Physiol, 1978, 235(1):R3~R17
[15] Vegard L. On the free pressure in osmosis[J]. Proc Camb Phil Soc, 1908, 15:13~23
[16] Mauro A and Onsager L. Nature of solvent transfer in osmosis.[J] Science, 1957,126:252-253
[17] Yaroshchuk A. Influence of osmosis on the diffusion from concentrated solutions through composite/asymmetric membranes: Theoretical analysis[J]. Journal of membrane science, 2010, 355(1-2):98~103
[18] Hill AE. Osmotic flow in membrane pores of molecular size[J]. Journal of Membrane Biology, 1994,137(3):197~203
[19] Hill AE. Osmotic flow in membrane pores[J]. International Review of Cytology, 1995, 163:1~42
[20] Tang C Y, She Q, Lay W C L, et al. Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration[J]. Journal of Membrane Science, 2010, 354(1-2): 123~133
[21] Chou S R, Shi L, Wang R, et al. Characteristics and potential applications of a novel forward osmosis hollow fiber membrane[J]. Desalination, 2010, 261(3): 365~372
[22] Harkins W D, McLaughlin H M. The structure of films of water on salt solutions I. Surface tension and adsorption for aqueous solutions of sodium chloride[J]. Journal of the American Chemical Society, 47:2083•2089
[23] Sourirajan S. The mechanism of demineralization of aqueous sodium chloride solutions by flow, under pressure, through porous membranes[J]. ndustrial & Engineering Chemistry Fundamentals, 1963, 2(1): 51~55
[24] Mi B X, Elimelech M. Gypsum Scaling and Cleaning in Forward Osmosis: Measurements and Mechanisms[J]. Environmental Science & Technology, 2010, 44(6): 2022~2028
[25] Sholl D S, Johnson J K. Making high-flux membranes with carbon nanotubes[J]. Science, 2006, 312(5776): 1003~1004
[26] Hinds B J, Chopra N, Rantell T, et al. Aligned multiwalled carbon nanotube membranes[J]. Science, 2004, 303(5654):62~65
[27] Jia Y X, Li H L, Wang M, et al. Carbon nanotube: possible candidate for forward osmosis[J]. Separation and Purification Technology, 2010, 75(1): 55~60
[28] Gray G T, McCutcheon J R and Elimelech M. Internal concentration polarization in forward osmosis: role of membrane orientation[J]. Desalination, 2006, 197(1-3):1~8
[29] McCutcheon J R, Mcginnis R L, Elimelech M. Desalination by ammonia-carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance[J]. Journal of Membrane Science, 2006, 278(1-2): 114~123
[30] Lonsdale H K, Merten U and Riley R L. Transport properties of cellulose acetate osmotic membranes[J]. Journal of Applied Polymer Science, 1965, 9(4):1341~1362
[31] McCutcheon J R, Elimelech M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis[J]. Journal of membrane science, 2006, 284(1-2):237~247
[32] McCutcheon J R, Elimelech M. Modeling Water Flux in Forward Osmosis: Implications for Improved Membrane Design[J]. AIChE Journal, 2007, 53(7): 1736~1744
[33] Tan C H, Ng H Y. Modified models to predict flux behavior in forward osmosis in consideration of external and internal concentration polarizations[J]. Journal of Membrane Science, 2008, 324(1-2): 209~219
[34] Sasidhar V and Ruckenstein E. Electrolyte osmosis through capillaries[J]. Journal of colloid and interface science, 1981, 82(2): 439~457
[35] Sasidhar V and Ruckenstein E. Anomalous effects during electrolyte osmosis across charged porous membranes[J]. Journal of colloid and interface science, 1982, 85(2): 332~362
[36] Janacek K and Sigler K. Osmosis: Membranes impermeable and permeable for solutes, mechanism of osmosis across porous membranes[J]. Physiol Res, 2000, 49(2):191~195
[37] Anderson J L and Malone D M. Mechanism of osmotic flow in porous membranes[J]. Biophysical Journal, 1974, 14(12):957~982
[38] Dainty J and Ferrier J. Osmosis at the molecular level[J]. Studia Biophys, 1989(133):133~140
[39] Agre P, King L S and Yasui M, etal. Aquaporin water channels-from atomic structure to clinical medicine[J]. J Physiol, 2002, 542:3~16
[40] Hammel H T and Scholander P F. Osmosis and tensile solvent[M].Berlin: Springer Verlag, 1976
[41] Scholander PF. Osmotic mechanism and negative pressure[J]. Science, 1967, 156:67~69
[42] Hammel HT. Forum on osmosis.Ⅰ. Osmosis: diminished solvent activity or enhanced solvent tension[J]. Am J Physiol, 1979, 237(3):R95~R107
[43] Wilson M F, Tough J T. Osmotic pressure of dilute solutions of He3 in He4[J]. Physical Review A, 1970, 1(3): 915~922
[44] Hildebrand JH. Forum on osmosis. Ⅱ. A criticism of “solvent tension” in osmosis[J]. Am J Physiol, 1979, 237(3):R108•R109
[45] Mauro A. Forum on osmosis. Ⅲ. Comments on Hammel and Scholander’s solvent tension theory and its application to the phenomenon of osmotic flow[J]. Am J Physiol, 1979, 237(3):R110~R113
[46] Soodak H. Forum on osmosis. Ⅳ. More on osmosis and diffusion[J]. Am J Physiol, 1979, 237(3):R114~R122
[47] Hammel HT. Forum on osmosis. Ⅴ. Epilogue[J]. Am J Physiol, 1979, 237(3): R123~R125
[48] Briggs L. Limiting negative pressure of water[J]. J Appl Phys, 1950, 21:721~722
[49] Maruo A. Osmotic flow in a rigid porous membrane[J]. Science, 1965, 149:867~869
[50] Cath TY, Childress AE and Elimelech M. Forward osmosis: principles, applications, and recent developments[J]. Journal of membrane science, 2006, 281(1-2):70~87
[51] Israelachvili J N. Intermolecular and surface force[M]. Second Edition. San Diego:Elsevier Academic Press, 1991
[52] Hansen J P, Mcdonald I R. Theory of simple liquids[M]. New York: Academic Press, 1976
[53] Ferrier J. Osmosis and intermolecular force[J]. Journal of Theoretical Biology, 1984, 106(4):449~453
[54] Qin J J, Chen S J, Oo M H, et al. Experimental studies and modeling on concentration polarization in forward osmosis[J]. Water Sci Technol, 2010, 61(11): 2897~2904
[55] Li G, Li X M, Liu Y, et al. Forward Osmosis and Concentration Polarization[J]. Progress in Chemistry, 2010, 22(5): 812~821
[56] Zhao Q, Ovchinnikova K, Chai B H, etal. Role of proton gradients in the mechanism of osmosis[J]. J Phys Chem B, 2009, 113(31):10708~10714
[57] Davis I S, Shachar-Hill B, Curry M R, et al. Osmosis in semi-permeable pores: an examination of the basic flow equations based on an experimental and molecular dynamics study[J]. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 2007, 463(2079): 881~896
[58] Itano T, Akinaga T, Sugihara-Seki M. Molecular dynamics study of solvent transport in nanoscale osmosis[J]. Journal of the Physical Society of Japan, 2008, 77(6): 064605-1~064605-7

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号