超声波在线监测卷式反渗透膜污染及清洗
作者:安耿宏1,林捷斌1,李贤辉1,李建新1*?,菅喜岐2,靖大为3
单位: 1天津工业大学 材料科学与工程学院 中空纤维膜材料与膜过程国家重点实验室培育基地天津 300160;2天津医科大学 生物医学工程系,天津 300070;3天津城市建设学院 膜技术中心 天津 300384
关键词: 超声时域反射法;卷式膜元件;反渗透;膜污染;膜清洗;声强
出版年,卷(期):页码: 2012,32(1):87-92

摘要:
本文应用超声时域反射法和信号拟合及量化模型在线监测卷式反渗透膜元件污染及清洗过程。实验采用三个2.25 MHZ高频聚焦探头和商业卷式反渗透膜组件,污染液为1.0 g/L硫酸钙。清洗阶段包括纯水冲洗、浸洗与酸洗三部分。结果表明,超声信号能够穿透组件外壳而进入多层膜结构,观察发现随膜表面污染沉积而超声信号发生系列有序变化。此外,随膜表面污染物沉积、结构变化以及污染层形成,声强不断减小至最低,后期趋于稳定。研究还发现沿进料液流动方向,信号变化诱导期趋于变短。而且,污染物优先靠近出口处沉积;越靠近料液出口,信号变化幅度越大,污染越严重。这是由于沿轴向不断加剧的浓差极化所致。在清洗阶段,随着膜通量恢复超声信号变化表现出一致性。
The study describes the ultrasonic time-domain reflectometry with a sound intensity model for monitoring membrane scaling and cleaning in a spiral-wound reverse osmosis element. Three focused transducers with the frequency of 2.25 MHZ and the commercial spiral-wound RO module were used. The scaling experiments were carried out with 1.0 g/L calcium sulfate and the cleaning process consisted of three different phases: pure water flushing, immersion cleaning and acid-washing. Results showed that the ultrasound generated by the focused transducer is capable to penetrate through the multiple layers of membrane. The systematic changes in ultrasonic signals had also been observed during the fouling process. The results of sound intensity revealed that the corresponding sound intensity gradually decreased to minimum with the deposition of the foulant on the membrane and then kept constant as the formation of fouling layer. Further, with different initial lag phases on different ports, the scaling gradually deposited and more and more along the feed flow direction with the fouling process due to concentration polarization. Moreover, the membrane flux and sound intensity recovered step by step with the cleaning processes. The results obtained by independent methods were in good agreement with the observations by ultrasonic technology.
 
安耿宏(1984-),男,山西省忻州市人,在读硕士,从事膜分离及水处理技术研究. *通讯联系人:022-24528072,〈jxli0288@yahoo.com.cn〉

参考文献:
[1] M. Gloede, T. Melin, Physical aspects of membrane scaling[J], Desalination, 2008, 224:71–75
[2] D. Hasson, A. Drak, R. Semiat, Inception of CaSO4 scaling on RO membranes at various water recovery levels[J], Desalination, 2001, 139:73-81
[3] C.M. Tun, A.G. Fane, J.T. Matheickal et al. Membrane distillation crystallization of concentrated salts—flux and crystal formation[J]. J. Membr. Sci., 2005, 257:144–155
[4] A. Rahardianto, W.Y. Shih, R.W. Lee, Y. Cohen, Diagnostic characterization of gypsum scale formation and control in RO membrane desalination of brackish water[J], J. Membr. Sci., 2006, 279:655–668
[5] J.X. Li, R.D. Sanderson, E.P. Jacobs. Non-invasive visualization of the fouling of microfiltration membranes by ultrasonic time-domain reflectometry[J]. J. Membr. Sci., 2001, 201: 17–29.
[6] T.H. Chong, F.S. Wong, A.G. Fane. Fouling in reverse osmosis: detection by non-invasive techniques[J]. Desalination, 2007, 204:148-154.
[7] J.X. Li, R.D. Sanderson, G.Y. Chai. A focused ultrasonic sensor for in situ detection of protein fouling on tubular ultrafiltration membranes[J]. Sensor and Actuators B., 2006, 114: 182–191.
[8] X.C. Xu, J.X. Li, H.S. Li et al. Non-invasive monitoring of fouling in hollow fiber membrane via UTDR[J]. J. Membr. Sci., 2009, 326:103-110.
[9] Z.X. Zhang, A.R. Greenberg, W.B. Krantz et al. Study of membrane fouling and cleaning in spiral wound modules using ultrasonic time-domain reflectometry (Chapter 4)[M]. In New Insights into Membrane Science and Technology: Polymeric and Biofunctional Membranes (edited by Bhattacharyya and Butterfield), Elsevier, 2003, p65-88.
[10] G.Y. Chai, A.R. Greenberg, W.B. Krantz. Ultrasound, gravimetric, and SEM studies of inorganic fouling in spiral-wound membrane modules[J]. Desalination, 2007, 208: 277-293.
[11] J.B. Lin, J.X. Li, G.H. An et al., UTDR as a non-destructive technique to detect membrane fouling in a spiral-wound RO module, International Water Associatin (IWA) Membrane Technology Conference & Exhibition 2009, Beijing, China 1-3 Sep., 2009, p102.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号