聚醚共聚酰胺多层复合气体分离膜的制备及其分离性能研究
作者:任晓灵,任吉中,邓麦村
单位: 中国科学院大连化学物理研究所膜技术国家工程研究中心
关键词: 二氧化碳分离; 多层复合膜; 聚醚共聚酰胺
出版年,卷(期):页码: 2012,32(2):30-35

摘要:
采用浸渍涂覆法,以聚醚共聚酰胺PEBA1074嵌段高分子为选择层膜材料制备具有超薄分离层的PEI/PDMS/PEBA1074/PDMS多层复合气体分离膜,探讨了操作条件对H2、N2、CH4和CO2等在多层复合膜中的渗透性能的影响.多层复合膜对极性气体具有较高的渗透通量,并且对极性/非极性气体分离体系具有较高的选择性.CO2对多层复合膜存在增塑作用,其渗透通量随操作压力的增加而增加;随着操作温度的升高,H2、N2、CH4和CO2在复合膜中的渗透通量显著增大,而CO2/非极性气体(H2、N2和CH4)的分离系数减小.气体渗透通量与温度的关系在PEO链段熔点的上下分别满足不同的Arrhenius方程.当操作温度大于PEO链段熔点温度时,气体的渗透活化减小.
 Block copolymer poly (amide-12-b-ethylene oxide) (PEBA1074) is used to fabricate multilayer polyetherimide(PEI)/polydimethylsilicone(PDMS)/PEBA1074/PDMS composite membranes by dip-coating method. The effects of operating conditions on the performance of the multilayer composite membranes are investigated. PEI/PDMS/PEBA1074/PDMS composite membranes show high permeance for polar gases and high ideal selectivity for polar/nonpolar gas systems. Due to CO2 induced plasticization effect, the CO2 permeance increases with increasing pressure. When temperature increases, the permeance of CO2, N2, H2, and CH4 through the composite membrane increases, while the selectivity of CO2/nonpolar gas (N2, H2, and CH4) decreases. The temperature dependency of gas permeance can be expressed by different Arrhenius equations below and above the melting temperature of PEO. The apparent activation energies of permeation decreases when the operation temperature is above the melting temperature of PEO.
任晓灵(1984-),女,河北石家庄,博士,从事膜分离过程研究.?通讯联系人, renjizhong@dicp.ac.cn

参考文献:
[1] 颜家保, 张浩,于庆满. 二氧化碳回收技术及应用前景[J]. 应用化工, 2005, 34(2):76-78.
[2] 许庆本, 李德发, 江迎宝. 天然气制氢装置中的CO2回收利用[J]. 甘肃科技, 2008, 24(4):28-30.
[3] Rao A B, Rubin E S. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control [J]. Environ Sci Technol, 2002,36:4467-4475.
[4] Baker R W. Membrane Technology and Applications [M]. New York: McGraw-Hill, 2000:6-14.
[5] Kim J H, Ha S Y, Lee Y M. Gas permeation of poly (amide-6-b-ethylene oxide) copolymer [J]. J Membr Sci, 2001,190:179-193.
[6] Bondar V I, Freeman B D, Pinnau I. Gas transport properties of poly (ether-b-amide) segment block copolymers [J]. J Polym Sci, B: Polym Phys, 2000,38:2051-2062.
[7] Liu L, Chakma A, Feng X. Preparation of hollow fiber poly(ether block amide)/polysulfone composite membranes for separation of carbon dioxide from nitrogen [J]. Chem Eng J, 2004,105:43-51.
[8] Liu L, Chakma A, Feng X. A novel method of preparing ultrathin poly(ether block amide) membranes[J]. J Membr Sci, 2004,235:43-52.
[9] Blume I, Pinnau I. Composite membrane, method of preparation and use [P]. US Pat: 4963165, 1990-10-16.
[10] Car A, Stropnik C, Yave W, et al. Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: Performance with mixed gases [J]. Sep Purif Technol, 2008,62:110-117.
[11] 刘迪, 任吉中, 邓麦村. 聚醚共聚酰胺复合气体分离膜的制备与分离性能 [J]. 膜科学与技术, 2010,30(3):44-49.
[12] Lin H, Freeman B D. Gas solubility diffusivity permeability in poly (ethylene oxide) [J]. J Membr Sci, 2004,239:105-117.
[13] Li J, Wang S, Nagai K, et al. Effect of polyethylene glycol (PEG) on gas permeabilities and permselectivities in its cellulose acetate (CA) blend membranes [J]. J Membr Sci, 1998,138:143-152.
[14] Ribeiro C P, Freeman B D. Carbon dioxide/ethane mixed-gas sorption and dilation in a cross-linked poly (ethylene oxide) copolymer [J]. Polymer, 2010,51:1156-1168.
[15] Lin H, Wagner E V, Freeman B D, et al. Plasticization-Enhanced Hydrogen Purification Using Polymeric Membranes [J]. Science, 2006,311:639-642.
[16] Matsuyama H, Teramoto M, Sakakura H. Selective permeation of CO2 through poly (2-(N,N-dimethyl) aminoethyl methacrylate) membrane prepared by plasma-graft polymerization technique [J]. J Membr Sci, 1996,114:193-200.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号