苯基修饰微孔SiO2膜的氢气分离和水煤气变换反应性能
作者:何 俊 韦 奇 段小勇 闫建平 李群艳 聂祚仁
单位: 北京工业大学材料科学与工程学院
关键词: 苯基;微孔SiO2膜;气体分离;氢气渗透
出版年,卷(期):页码: 2012,32(2):65-69

摘要:
通过正硅酸乙酯与苯基三乙氧基硅烷共水解缩聚反应制备苯基修饰SiO2膜,研究膜材料的氢气渗透和分离性能,并将其作为膜反应器的关键材料应用于水煤气变换反应。结果表明,氢气在苯基修饰SiO2膜中的渗透率随着温度的升高而增大,遵循活化扩散机理, 300℃下H2渗透率达到4.67×10-7mol•m-2•s-1•Pa-1,理想分离系数H2/CO、H2/CO2和H2/SF6分别达到10.54、10.50、21.16。在300℃,反应物H2O/CO摩尔比为2:1的条件下进行水煤气变换反应,膜反应器的CO的转化率比传统固定床反应的CO的转化率高约12%,其原因是苯基修饰的SiO2膜对H2具有一定的选择性。
Silica membranes were modified by phenyl groups through an acid-catalyzed co-hydrolysis and condensation of tetraethylorthosilicate (TEOS) and phenyltriethoxysilane (PTES). The hydrogen permeation and separation performance of the phenyl-modified silica membranes and their role in the water gas shift reaction were investigated in detail. The results show that the hydrogen transportation in the modified silica membranes is subjected to an activated diffusion mechanism, as demonstrated by the fact that hydrogen permeance increases with increasing temperatures. The silica membranes possess a hydrogen permeance of 4.67×10-7mol•m-2•s-1•Pa-1and a permselectivity of 10.54, 10.50 and 21.16 for H2/CO、H2/CO2 and H2/SF6 respectively at 300℃. The CO conversion of the membrane reactor is 12% higher than that of fixed-bed at a temperature of 300℃ and a H2O/CO ratio of 2:1, due to the hydrogen selective property of the modified silica membranes.
何 俊(1984-),男,硕士研究生,E-mail: hejun65074@163.com 联系人简介:韦 奇(1970-),男,博士,教授,主要从事面向洁净能源的多孔无机膜材料的研究。E-mail: qiwei@biut.edu.cn

参考文献:
[1]王卫平,潘秀莲,熊国兴,等. 钯/ 陶瓷中空纤维复合膜反应器中的水煤气变换反应.[J].催化学报, 2005,26(12):1042-1046.
[2]Brunett A, Barbieri G, Drioli E. A porous stainless steel supported silica membrane for WGS reaction in a catalytic membrane reactor. [J]. Chemical Science,2007, 62:5621-5626.
[3]Adrover M, López E, Borio D O, et al. Theoretical Study of a Membrane Reactor for the Water Gas Shift Reaction Under Nonisothermal Conditions.[J].AICHE JOURNAL, 2009, 55(12): 3206-3213.
[4]Battersby S, Smarta S, Ladewig B, et al. Hydrothermal stability of cobalt silica membranes in a water gas shift membrane reactor.[J].Separation and Purify Technology, 2009, 66: 299–305.
[5]Castricum H-L, Sah A, Kreiter R-J, et al. Hydrothermally stable molecular separation membranes from organically linked silica. [J]. Material Chemical, 2008, 18:2150-2158
[6] Nomura M, Ono K, Gopalakrishnan S, et al. Preparation of a stable silica membrane by a counter diffusion chemical vapor deposition method. [J]. Journal of Membrane Science, 2005, 251(1/2): 151−158.
[7]韦奇,李健林,宋春林, 等.微孔二氧化硅膜的制备,氢气分离以及水热稳定性研究.[J].无机材料学报, 2004,19(1): 133−139.
[8]De Vos R-M, Maier W-F, Verweij H. Hydrophobic silica membranes for gas separation. [J]. Journal of Membrane Science, 1999, 158(1/2): 277-288.
[9]韦奇,李健林,宋春林, 等. 憎水二氧化硅膜的制备表征、水热稳定性研究.[J].无机材料学报, 2004.19(2): 417−423.
[10]王艳丽,韦奇,聂祚仁,等. 乙烯基修饰的微孔二氧化硅膜孔结构与疏水性研究.[J].无机材料学报, 2007,22(5):949-953.
[11]WEI Qi, Wang Fei, NIE Zuo-Ren, et al. Highly Hydrothermally Stable Microporous Silica Membranes for Hydrogen Separation.[J].Journal of Physical Chemical (B), 2008, 112(31): 9354—9359
[12]李振杰,韦奇,聂祚仁, 等. 苯基修饰的疏水微孔二氧化硅膜的制备与表征.[J].高等学校化学学报, 2010, 31(12):2482—2487
[13]Giessler S, Jordan L, Da Costa J-C-D, et al. Performance of hydrophobic and hydrophilic silica membrane reactors for the water gas shift reaction.[J].Separation and Purify Technology, 2003, 32:255-264.
[14]De Vos R M, Verweij H. Improved performance of silica membranes for gas separation.[J].Journal of Membrane Science, 1998, 143:37-51
[15]Battersby S, Duke M-C, Liu S, et al. Metal doped silica membrane reactor: Operational effects of reaction and permeation for the water gas shift reaction. [J].Journal of Membrane Science, 2008, 316:46-52

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号