BPDA-ODA型聚酰亚胺基沸石杂化炭膜的制备及气体分离性能?
作者:张兵1 于智学1 石毅1 吴永红1 王同华2
单位: 1. 沈阳工业大学 石油化工学院,辽宁辽阳 111003;
关键词: 聚酰亚胺;炭膜;沸石;渗透性
出版年,卷(期):页码: 2013,33(3):33-38

摘要:
以BPDA-ODA型聚酰亚胺为前躯体,沸石为掺杂剂,通过成膜和炭化等过程制备了杂化炭膜。分别采用热失重、X射线衍射、扫描电子显微镜及渗透技术研究了前躯体热稳定性,炭膜微观结构、形貌及气体分离性能。考察了ZSM-5与5A两种沸石含量、炭化温度、渗透温度及渗透压力等因素对炭膜气体分离性能的影响。结果表明:H2、CO2、O2和N2四种气体主要以分子筛分机理渗透通过炭膜,实现选择性分离。在650oC炭化温度下得到杂化炭膜随沸石含量提高,气体渗透性与选择性均略降低;5A杂化炭膜的渗透性与选择性都显著高于ZSM-5杂化炭膜;随渗透压力提高,杂化炭膜的气体渗透性与选择性升高。当炭化温度从650oC升高到750oC时,杂化炭膜的渗透性降低。
Hybrid carbon membranes are first prepared using BPDA-ODA type polyimide and zeolites as precursors and additives, respectively. The thermal stability of the precursor was measured by thermogravimetric analysis. The microstructure, morphology and gas separation performance of resultant carbon membranes were characterized by X-ray diffraction, scanning electronic microscopy and gas permeation technique, respectively. The effects of zeolite types (ZSM-5 and 5A), zeolite dosage, carbonization temperature, and permeation-temperature and permeation-pressure were investigated on the gas separation performance of hybrid carbon membranes. The results have shown that the permeation mechanism for the four gases, H2, CO2, O2 and N2, is molecular sieving through the hybrid carbon membranes. When the hybrid carbon membranes are prepared at the carbonization temperature of 650 oC, both of their permeability and selectivity slightly reduce. In comparison, 5A is more favorable than ZSM-5 to be used as additives with the aspect to increase separation performance of resultant carbon membranes. With increasing the permeation pressure, both the permeability and selectivity increase. As the carbonization temperature goes up from 650 oC to 750 oC, the permeability of hybrid carbon membranes reduces.
张兵(1977-),男,博士,副教授,主要从事炭膜制备及应用研究;Email: bzhangdut@163.com; zhangbing@sut.edu.cn。

参考文献:
[1] Ismail A F, Rana D, Matsuura T, et al. Carbon-based membranes for separation processes[M]. Springer New York Dordrecht Heidelberg London, 2011.
[2] Paul D R. Creating new types of carbon-based membranes[J]. Science, 2012, 335: 413-414.
[3] Tin P S, Xiao Y, Chung T-S. Polyimide-carbonized membranes for gas separation: structural, composition, and morphological control of precursors[J]. Sep Puri? Rev, 2006, 35: 285–318.
[4] Salleh W N W, Ismail A F, Matsuura T, et al. Precursor selection and process conditions in the preparation of carbon membrane for gas separation: a review[J]. Sep Puri? Rev, 2011, 40: 261–311.
[5] 张兵,王同华,呼立红,等. 聚酰亚胺基气体分离炭膜的进展[J]. 膜科学与技术, 2007, 27: 97-101.
[6] Sá S, Silva H, José M, et al. Hydrogen production by methanol steam reforming in a membrane reactor: Palladium vs carbon molecular sieve membranes[J]. J Membr Sci, 2009, 339: 160-170.
[7] Xiao Y, Chng ML, Chung TS, et al. Asymmetric structure and enhanced gas separation performance induced by in situ growth of silver nanoparticles in carbon membranes[J]. Carbon, 2010, 48: 408-416.
[8] Tseng H-H, Shiu P-T, Lin Y-S. Effect of mesoporous silica modification on the structure of hybrid carbon membrane for hydrogen separation[J]. Hydrogen Energy, 2011, 36: 15352-15363.
[9] Tin P S, Chung T-S, Jiang L, et al. Carbon–zeolite composite membranes for gas separation[J]. Carbon, 2005, 43: 2025–2027.
[10] Liu Q, Wang T, Liang C, et al. Zeolite married to carbon: a new family of membrane materials with excellent gas separation performance[J]. Chem Mater, 2006, 18: 6283-6288
[11] Liu Q, Wang T, Guo H, et al. Controlled synthesis of high performance carbon/zeolite T composite membrane materials for gas separation[J]. Microporous and Mesoporous Materials, 2009, 120: 460–466.
[12] Li G, Yang J, Wang J, et al. Thin carbon/SAPO-34 microporous composite membranes for gas separation[J]. J Membr Sci, 2011, 374: 83-92.
[13] Kong C, Wang J, Yang J, et al. Thin carbon-zeolite composite membrane prepared on ceramic tube ?lter by vacuum slip casting for oxygen/nitrogen separation[J]. Carbon, 2007, 45: 2848-2850.
[14] Varela-Gandía F J, Berenguer-Murcia Á, Lozano-Castelló D, et al. Zeolite A/carbon membranes for H2 puri?cation from a simulated gas reformer mixture[J]. J Membr Sci, 2011, 378: 407–414.
[15] Yin X, Wang J, Chu N, et al. Zeolite L/carbon nanocomposite membranes on the porous alumina tubes and their gas separation properties[J]. J Membr Sci, 2010, 348: 181–189.
[16] Zhang B, Wang T, Wu Y, et al. Preparation and gas permeation of composite carbon membranes from poly(phthalazinone ether sulfone ketone) [J]. Sep Purif Tech, 2008, 60: 259–263.
[17] Zhang B, Wang T, Zhang S, et al. Preparation and characterization of carbon membranes made from poly(phthalazinone ether sulfone ketone) [J]. Carbon, 2006, 44: 2764-2769.
[18] Isoda S, Shimada H, Kochi M, et al. Molecular aggregation of solid aromatic polymers. I. Small-angle x-ray scattering from aromatic polyimide film[J]. J Polym Sci: Polym Phys, 1981, 19: 1293–1312.
[19] Hatori H, Yamada Y, Shiraishi M, et al. The mechanism of polyimide pyrolysis in the early stage[J]. Carbon, 1996, 34: 201-208.
[20] Wu E L, Lawton S L, Olson D H, et al. ZSM-5-type materials. Factors affecting crystal symmetry[J]. J Phys Chem, 1979, 83: 2777-2781.
[21] Strano M S, Foley H C. Temperature- and pressure-dependent transient analysis of single component permeation through nanoporous carbon membranes[J]. Carbon, 2002, 40:1029–1041.
[22] Hayashi J-i, Mizuta H, Yamamoto M, et al. Pore size control of carbonized BPDA-pp’ODA polyimide membrane by chemical vapor deposition of carbon[J]. J Membr Sci, 1997,124: 243-251.
[23] 张兵, 王同华, 丁孟贤, 等. 聚酰亚胺基炭分子筛膜的制备及表征[C]. 第二届中国膜科学与技术报告会论文集, 2005-09-13, 北京: 34-42.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号