空气隙膜组件与半导体制冷的耦合设计与研究
作者:尹秀翠1,邢世录1,杨晓宏1,杨胜男1,田瑞12
单位: 1 内蒙古工业大学能源与动力工程学院,呼和浩特 010051;2 内蒙古可再生能源重点实验室 呼和浩特 010051
关键词: 空气隙膜蒸馏;半导体制冷;耦合设计;匹配理论
出版年,卷(期):页码: 2014,34(1):45-50

摘要:
本文是以新型气隙式膜蒸馏冷腔为研究对象,拟寻求合适的制冷源来代替大型、高耗能的制冷机。对新型空气隙膜组件与半导体制冷片的匹配理论进行了研究,并且做了耦合设计。实验采用空气强制对流散冷和循环水浴散热的方式,测试分析在特定条件下半导体冷端温度的变化规律,探求适合于空气隙膜蒸馏冷腔的片数及运行工况。研究结果表明,半导体制冷片不但响应时间迅速,而且长时间运行稳定性好。散热循环水浴流量对半导体冷端的温度影响很大。在风机风量600m3/h,室温22℃,散热循环水浴流量700L/h,水温20℃的条件下,输入电流I=20A时,半导体冷端温度是8.86℃,制冷量是112.83W,在膜面积为0.0104m2时,可以达到膜蒸馏冷腔所需的温度条件。可以作为优化新型气隙式膜组件冷腔的首选方案。
This paper is based on the new air gap membrane distillation cooling cavity as the object of study for seeking a suitable refrigeration source instead of large, high energy consumption of the refrigerating machine. Study the matching theory of the new air gap membrane distillation components and semiconductor refrigeration, at the same time, making the coupling design.To use forced convection cold dispersion and circulator bath cooling way, under specific conditions test analysis semiconductor cold end temperature variation, explore suitable for semiconductor number and operation conditions of air gap membrane distillation cooling cavity. Research results show that there has a great effect on the semiconductor cold end temperature for cooling circulating water flow rate. Besides also have advantages, such as suitable for long time operation, rapid cooling, good stability and so all. It can be true that semiconductor cold end temperature can reach the desired temperature conditions of membrane distillation cooling cavity, in the conditions of the fan air volume is 600m3/h, room temperature is 24℃, cooling circulating water flow is 700L/h, water temperature is 20℃, input current is 20A. In these conditions the semiconductor cold end temperature is 8.86℃,refrigerating capacity is 112.83W and membrane area is 0.0104 m2. It can be used as the preferred scheme of optimization air gap new membrane component cooling cavity.
尹秀翠(1987- ),女,内蒙古锡林郭勒盟人,硕士生,从事膜分离技术研究,E-mail,yclyxc_1987@163.com

参考文献:
[1] Lawson K W, Lloyd D R. Review: Membrane distillation[J]. Journal of Membrane Science, 1997, 124(1): 1-15.
[2] Zakrzewska-Trznadel G, Harasimowicz M, Chemielewski A G. Concentration of radioactive components in liquid low-level radioactive waste by membrane distillation[J]. Journal of Membrane Science, 1999, 163(2): 257-264.
[3] 高虹,田瑞,杨晓宏.空气隙膜蒸馏系统对流换热实验研究[J].能源研究与利用,2008,1:22-24.
[4] 田瑞,李嵩,杨晓宏.高通量空气隙膜蒸馏系统的实验研究[J].清华大学学报(自然科学版),2007,47(11):2056~2059.
[5] 尹招琴,田瑞,单伟忠. 空气隙膜蒸馏过程传质的强化[J]. 膜科学与技术,2007,27(5):27~30.
[6] 李洪斌,杨先.半导体制冷技术原理与应用[J].现代物理知识.2009,19(5):34~36.
[7] Buist R J.A simplifed method for thermoelectric heat pump optimization[C]. Proceedings of the 3 International Conference on Thermoelectric Enery Conversion, 1980: 130~134.
[8] HUANG Hsiang-sheng, WENG Ying-che, CHEANG Yu-wen, et ai. Thermoelectric              water-cooling device applied to electronic equipment[J]. International Communications in Heat and Mass Transfer, 2010, 37 (2): 140-146.
[9] 马淑娟.层叠式膜组件PTFE膜渗透性能及膜污染实验研究[D].呼和浩特:内蒙古工业大学硕士学位论文.2011.
[10] liu GL. Zhu C. Cheung CS. Leung CW. Theoretical and experimental studies on air gap membrane distillation[J]. Heat and mass transfer. 1998, 34: 329-335.
[11] R.W. Schofield, A.G. Fane, C.J.D. Fell. Heat and mass transfer in membrane distillation [J]. J. Membr. SCI. 1987, 33: 299-313.
[12] 高虹.空气隙膜蒸馏传热传质过程机理研究[D].呼和浩特:内蒙古工业大学博士学位论文.2009.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号