乙醇对金属钯复合膜透氢性能影响的研究
作者:张继新 ,俞佳枫2,方雯1,徐恒泳2
单位: 1哈尔滨师范大学,哈尔滨,化学学院,150080;2中科院大连化学物理研究所,大连,116023
关键词: 金属钯复合膜;透氢性能;气氛影响;乙醇;乙醇水蒸气重整
分类号: TQ214或TQ032.4
出版年,卷(期):页码: 2014,34(1):51-56

摘要:
利用化学镀的方法制备了不同厚度的钯膜,着重研究了乙醇水蒸气重整反应气氛下钯膜的透氢性能. 实验结果表明573-623K时,乙醇氢气混合气(Et/H2)气氛对钯膜透氢性能的影响大于乙醇水蒸气混合气(Et/H2O)气氛;623-673K时,Et/H2O气氛对钯膜透氢性能的影响大于Et/H2气氛.当钯膜暴露在H2/N2/Et和H2/N2/Et/H2O气氛下50min后,透氢量分别能恢复至初始值的96%和89%.此外,乙醇水蒸气重整反应气氛中,较大的水醇比(10-13)和较薄的钯膜(2-6µm)有利于抑制钯膜透氢量的下降.
 In this paper, different thicknesses of palladium membrane were prepared by chemical plating and the effect of ethanol on hydrogen permeation of palladium membrane was foced on investigating. The results showed that the influence of Et/H2 atmosphere on hydrogen permeation of palladium membrane was more serious than  Et/H2O atmosphere at low temperature (573-623K). While it is completely opposite at high temperature (623-673K). Moreover, exposure tests of different atmospheres showed that hydrogen permeation value restored to 96% and 89% of the initial value in H2/N2/Et and H2/N2/Et/H2O atmosphere, respectively. In addition, larger water ethanol ratio (10-13) and thinner palladium membrane (2-6 µm) were in favor of suppressing the effect of ethanol on the hydrogen permeation of palladium membrane.

基金项目:
国家高技术研究发展计划(863计划), 课题编号:2012AA03A612

作者简介:
张继新(1985-),女,黑龙江省依安县人,硕士,从事钯膜性能评价研究. 联系电话:0411-84379231; E-mail: zhangjixin1985@126.com 通讯联系人:俞佳枫Tel: 0411-84379283;E-mail: yujf@dicp.ac.cn;徐恒泳Tel: 0411-84581234;E-mail: xuhy@dicp.ac.cn

参考文献:
[1]Moriarty P,Honnery D. Intermittent renewable energy: The only future source of hydrogen?[J]. International Journal of Hydrogen Energy, 2007, 32(12): 1 616-1 624.
[2]Ni M,Leung D Y,CLeung M K H. A review on reforming bio-ethanol for hydrogen production.[J]. International Journal of Hydrogen Energy, 2007, 32(15): 3 238-3 247.
[3]Iulianelli A,Basile A. Hydrogen production from ethanol via inorganic membrane reactors technology: a review.[J].Catalysis Science & Technology, 2011, 1(3): 366-379.
[4]Manzolini G,Tosti S. Hydrogen production from ethanol steam reforming: energy efficiency analysis of traditional and membrane processes[J]. International Journal of Hydrogen Energy, 2008, 33(20): 5 571-5 582.
[5]Yun S,Lim H,Ted Oyama S. Experimental and kinetic studies of the ethanol steam reforming reaction equipped with ultrathin Pd and Pd–Cu membranes for improved conversion and hydrogen yield.[J].J Membr Sci,2012, 409-410: 222-231.
[6]Li H,Goldbach A,Li W,et al. CO2 Decomposition over Pd Membrane Surfaces.[J].The Journal of Physical Chemistry Letters B,2008,112(39): 12 182-12 184.
[7]Gallucci F,Chiaravalloti F,Tosti S,et al. The effect of mixture gas on hydrogen permeation through a palladium membrane: Experimental study and theoretical approach[J]. International Journal of Hydrogen Energy,2007, 32(12): 1 837-1 846.
[8]Miguel C V, Mendes A, Tosti S, et al. Effect of CO and CO2 on H2 permeation through finger-like Pd–Ag membranes[J].International Journal of Hydrogen Energy, 2012, 37(17): 12 680-12 687.
[9]Li H,Goldbach A,Li W,et al. PdC formation in ultra-thin Pd membranes during separation of H2/CO mixtures[J]. J Membr Sci,2007, 299(1-2): 130~137.
[10]Lischka M, Mosch C, Gross A. CO and hydrogen adsorption on Pd(210)[J].Surface Science,2004,570(3): 227-236.
[11]Ziemecki S B,Jones G A,Swartzfager D G,et al. Formation of Interstitial Pd-C Phase by Interaction of Ethylene, Acetylene, and Carbon Monoxide with Palladium[J]. J Am Chem Soc, 1985, 107(15): 4 547-4 548.
[12]Amandusson H,Ekedahl L G,Dannetun H. Methanol-induced hydrogen permeation through a palladium membrane[J].Surface Science,1999,442(2): 199-205.
[13] 张小亮,王卫平,熊国兴,等. 乙醇水汽重整制氢反应中钯铜合金膜的透氢性能[J].催化学报,2010,31(8):1 049-1 053.
[14]唐春华, 邵伟. 超薄金属钯复合膜表面缺陷修饰的研究[J].天然气化工, 2009, 34:10-16.
[15]Ekedahl L G,Amandusson H,Dannetun H. Alcohol dehydrogenation over Pd versus PdAg membranes[J].Applied Catalysis A:General,2001,217(1-2): 157-164.
[16] Basagiannis A C,Panagiotopoulou P,Verykios X E. Low Temperature Steam Reforming of Ethanol Over Supported Noble Metal Catalysts[J].Top Catal,2008,51(1-4): 2-12.
[17]马华锋,姚楠,李小年. 乙醇水蒸汽重整制氢负载型镍基催化剂研究进展[J].工业催化,2011,19(9):1-5.
[18]Chen Y K F L,Sakamoto F,Nakayama Y,et al. Hydrogen permeation through palladium-based alloy membranes in mixtures of 10% methane and ethylene in the hydrogen[J]. International Journal of Hydrogen Energy, 1996, 21(7): 555-616.
[19]Jung S H,Kusakabe K,Morooka S,et al. Effects of co-existing hydrocarbons on hydrogen permeation through a palladium membrane[J]. J Membr Sci,2000, 170(1): 53-60.
[20]Tosti S,Basile A,Borgognoni F,et al. Low-temperature ethanol steam reforming in a Pd–Ag membrane reactorPart 2. Pt-based and Ni-based catalysts and general comparison[J].J Membr Sci,2008,30

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-80492417/010-80485372 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号