沸石分子筛膜研究进展
作者:王金渠 杨建华 李华征 李良清
单位: 1大连理工大学精细化工国家重点实验室, 吸附与无机膜研究所, 大连 116024; 2大连理工大学盘锦校区, 石油与化学工程学院, 盘锦 124221
关键词: 沸石分子筛膜;结构与性能调控;应用;研究进展
出版年,卷(期):页码: 2014,34(3):1-7

摘要:
 沸石分子筛膜材料由于其独特均一的孔道结构及可调变的表面等性质,在分子级别的分离表现了高度的分离选择性及优越性,成为膜科学与研究的前沿和热点领域之一。本文介绍了面向不同分离体系沸石分子筛膜材料设计、制备与应用,重点探讨了沸石分子筛膜材料结构与性能调控的策略,分析了其产业化生产和工业应用进程,提出了采用新策略调控沸石分子筛膜的结构与性能是沸石膜发展的关键,并指出了沸石分子筛膜的研究发展方向。
 Zeolite membranes have advantages with highly selective property at the molecular level due to its unique pore structure and tunable surface properties, and become one of the frontier and hot issue for research field of membrane science. This paper provided an overview on the design, preparation and application of zeolite membrane for separation of various molecular mixtures. The strategy on manipulating the microstructure and separation performance was emphasized and the progress on the industrialization production and industrial application were analyzed. It is put forward that a new strategy for controlling structure and performance of zeolite membrane was key for development of high performance zeolite membrane. The development trend and prospect on zeolite membranes was also briefly discussed.
王金渠(1946-),男,教授,江苏省南通市人,博士生导师,从事吸附与无机膜研究. *通讯作者, E-mail:, wjinqu@dlut.edu.cn;yjianhua@dlut.edu.cn

参考文献:
[1] 徐如人, 庞文琴,于吉红. 分子筛与多孔材料化学 (Chemistry—Zeolites and Porous Materials)[M]. 2004.
[2] Tavolaro A,Drioli E. Zeolite membranes[J]. Advanced materials,1999,11:975-996.
[3] 徐南平. 无机膜的发展现状与展望[J]. 化工进展,2000,19:5-9.
[4] 王金渠, 杨建华, 陈赞, 等. 沸石分子筛膜苛刻环境有机物脱水的研究进展[J]. 膜科学与技术,2011,31:118-126.
[5] McLeary E, Jansen J,Kapteijn F. Zeolite based films, membranes and membrane reactors: Progress and prospects[J]. Microporous and Mesoporous Materials,2006,90:198-220.
[6] http://www.iza-structure.org/databases/.
[7] Bowen T C, Noble R D,Falconer J L. Fundamentals and applications of pervaporation through zeolite membranes[J]. Journal of Membrane Science,2004,245:1-33.
[8] Li S, Falconer J L,Noble R D. SAPO-34 membranes for CO2/CH4 separation[J]. Journal of Membrane Science,2004,241:121-135.
[9] Morigami Y, Kondo M, Abe J, et al. The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane[J]. Separation and Purification Technology,2001,25:251-260.
[10] Billard P,Kind M. Performance of PVA-and zeolite-membranes in selective drying processes[J]. Chemical Engineering and Processing: Process Intensification,2003,42:23-28.
[11] Ge Q, Wang Z,Yan Y. High-performance zeolite NaA membranes on polymer− zeolite composite hollow fiber supports[J]. Journal of the American Chemical Society,2009,131:17056-17057.
[12] Yin X, Zhu G, Yang W, et al. Stainless-Steel-Net-Supported Zeolite NaA Membrane with High Permeance and High Permselectivity of Oxygen over Nitrogen[J]. Advanced materials,2005,17:2006-2010.
[13] Wang Z, Ge Q, Shao J, et al. High Performance Zeolite LTA Pervaporation Membranes on Ceramic Hollow Fibers by Dipcoating− Wiping Seed Deposition[J]. Journal of the American Chemical Society,2009,131:6910-6911.
[14] Zhou R, Hu N, Wu X, et al. [P1. 032] Dpermeation by Zeolite NaA Membranes. Procedia Engineering,2012,44:746-747.
[15] Li H, Wang J, Xu J, et al. Synthesis of zeolite NaA membranes with high performance and high reproducibility on coarse macroporous supports[J]. Journal of Membrane Science,2013,444:513-522.
[16] Yang Z, Liu Y, Yu C, et al. Ball-milled NaA zeolite seeds with submicron size for growth of NaA zeolite membranes[J]. Journal of Membrane Science,2012,392:18-28.
[17] Li Y, Liu J,Yang W. Formation mechanism of microwave synthesized LTA zeolite membranes[J]. Journal of Membrane Science,2006,281:646-657.
[18] Wang Z, Ge Q, Gao J, et al. High-Performance Zeolite Membranes on Inexpensive Large-Pore Supports: Highly Reproducible Synthesis using a Seed Paste[J]. ChemSusChem,2011,4:1570-1573.
[19] Sato K, Sugimoto K,Nakane T. Synthesis of industrial scale NaY zeolite membranes and ethanol permeating performance in pervaporation and vapor permeation up to 130 C and 570kPa[J]. Journal of Membrane Science,2008,310:161-173.
[20] Matsukata M. Zeolite membranes for dehydration of organic solvents. 6th international zeolite membrane meeting, Korea, June,2013.
[21] Hasegawa Y, Nagase T, Kiyozumi Y, et al. Influence of acid on the permeation properties of NaA-type zeolite membranes[J]. Journal of Membrane Science,2010,349:189-194.
[22] Zhou H, Li Y, Zhu G, et al. Microwave-assisted hydrothermal synthesis of a & b-oriented zeolite T membranes and their pervaporation properties[J]. Separation and Purification Technology,2009,65:164-172.
[23] Zhou R, Zhang F, Hu N, et al. Fast preparation of high-performance zeolite T membranes in fluoride media[J]. Chemistry Letters,2011,40:1383-1385.
[24] Wang X, Chen Y, Zhang C, et al. Preparation and Characterization of High-Flux T-Type Zeolite Membranes Supported on YSZ Hollow Fibers[J]. Journal of Membrane Science,2014, 455:294-304.
[25] Chen X, Wang J, Yin D, et al. High‐performance zeolite T membrane for dehydration of organics by a new varying temperature hot‐dip coating method[J]. AIChE Journal,2013,59:936-947.
[26] Tanaka K, Yoshikawa R, Ying C, et al. Application of zeolite membranes to esterification reactions[J]. Catalysis Today,2001,67:121-125.
[27] Hasegawa Y, Abe C, Mizukami F, et al. Application of a CHA-type zeolite membrane to the esterification of adipic acid with isopropyl alcohol using sulfuric acid catalyst[J]. Journal of Membrane Science,2012,415:368-374.
[28] Yamanaka N, Itakura M, Kiyozumi Y, et al. Acid stability evaluation of CHA-type zeolites synthesized by interzeolite conversion of FAU-type zeolite and their membrane application for dehydration of acetic acid aqueous solution[J]. Microporous and Mesoporous Materials,2012,158:141-147.
[29] Sato K, Sugimoto K, Kyotani T, et al. Synthesis, reproducibility, characterization, pervaporation and technical feasibility of preferentially b-oriented mordenite membranes for dehydration of acetic acid solution[J]. Journal of Membrane Science,2011,385:20-29.
[30] Zhu M-H, Kumakiri I, Tanaka K, et al. Dehydration of acetic acid and esterification product by acid-stable ZSM-5 membrane[J]. Microporous and Mesoporous Materials,2013,181:47-53.
[31] Chen Z, Li Y, Yin D, et al. Microstructural optimization of mordenite membrane for pervaporation dehydration of acetic acid[J]. Journal of Membrane Science,2012,411:182-192.
[32] Chen Z, Yin D, Li Y, et al. Functional defect-patching of a zeolite membrane for the dehydration of acetic acid by pervaporation[J]. Journal of Membrane Science,2011,369:506-513.
[33] Peng Y, Zhan Z, Shan L, et al. Preparation of zeolite MFI membranes on defective macroporous alumina supports by a novel wetting–rubbing seeding method: Role of wetting agent[J]. Journal of Membrane Science,2013,444:60-69.
[34] Shan L, Shao J, Wang Z, et al. Preparation of zeolite MFI membranes on alumina hollow fibers with high flux for pervaporation[J]. Journal of Membrane Science,2011,378:319-329.
[35] Shu X, Wang X, Kong Q, et al. High-flux MFI zeolite membrane supported on YSZ hollow fiber for separation of ethanol/water[J]. Industrial & Engineering Chemistry Research,2012,51:12073-12080.
[36] Zou X, Bazin P, Zhang F, et al. Ethanol Recovery from Water Using Silicalite‐1 Membrane: An Operando Infrared Spectroscopic Study[J]. ChemPlusChem,2012,77:437-444.
[37] Zhang X, Zhu M, Zhou R, et al. Synthesis of silicalite-1 membranes with high ethanol permeation in ultradilute solution containing fluoride[J]. Separation and Purification Technology,2011,81:480-484.
[38] Liu X, Li Y, Liu Y, et al. Capillary supported ultrathin homogeneous silicalite-poly (dimethylsiloxane) nanocomposite membrane for bio-butanol recovery[J]. Journal of Membrane Science,2011,369:228-232.
[39] Sun W, Wang X, Yang J, et al. Pervaporation separation of acetic acid–water mixtures through Sn-substituted ZSM-5 zeolite membranes[J]. Journal of Membrane Science,2009,335:83-88.
[40] Krishna R,Van Baten J. Segregation effects in adsorption of CO2-containing mixtures and their consequences for separation selectivities in cage-type zeolites[J]. Separation and Purification Technology,2008,61:414-423.
[41] Cui Y, Kita H,Okamoto K-i. Preparation and gas separation properties of zeolite T membrane[J]. Chemical Communications,2003,2154-2155.
[42] Cui Y, Kita H,Okamoto K-i. Preparation and gas separation performance of zeolite T membrane[J]. Journal of Materials Chemistry,2004,14:924-932.
[43] Himeno S, Tomita T, Suzuki K, et al. Synthesis and permeation properties of a DDR-type zeolite membrane for separation of CO2/CH4 gaseous mixtures[J]. Industrial & Engineering Chemistry Research,2007,46:6989-6997.
[44] Mertens M M,Engels B. Synthesis of silicoaluminophosphates[P]. US7014827 B2, 2006-3-21.
[45] Carreon M A, Li S, Falconer J L, et al. SAPO-34 Seeds and Membranes Prepared Using Multiple Structure Directing Agents[J]. Advanced materials,2008,20:729-732.
[46] Carreon M A, Li S, Falconer J L, et al. Alumina-supported SAPO-34 membranes for CO2/CH4 separation[J]. Journal of the American Chemical Society,2008,130:5412-5413.
[47] White J C, Dutta P K, Shqau K, et al. Synthesis of ultrathin zeolite Y membranes and their application for separation of carbon dioxide and nitrogen gases[J]. Langmuir,2010,26:10287-10293.
[48] Lai Z, Bonilla G, Diaz I, et al. Microstructural optimization of a zeolite membrane for organic vapor separation[J]. Science,2003,300:456-460.
[49] Gora L, Nishiyama N, Jansen J, et al. Highly reproducible high-flux silicalite-1 membranes: optimization of silicalite-1 membrane preparation[J]. Separation and Purification Technology,2001,22:223-229.
[50] Voß H, Diefenbacher A, Schuch G, et al. Butene isomers separation on titania supported MFI membranes at conditions relevant for practice[J]. Journal of Membrane Science,2009,329:11-17.
[51] Coronas J,Santamaria J. State-of-the-art in zeolite membrane reactors[J]. Topics in catalysis,2004,29:29-44.
[52] Hong Z, Wu Z, Zhang Y, et al. Catalytic Cracking Deposition of Methyldiethoxysilane for Modification of Zeolitic Pores in MFI/α-Al2O3 Zeolite Membrane with H+ Ion Exchange Pretreatment[J]. Industrial & Engineering Chemistry Research,2013,52:13113-13119.
[53] 李刚. SAPO-34 及复合膜的制备, 表征及其膜反应器性能研究[D]. 2009.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号