双极膜电渗析解离NaCl清洁制备酸碱的实验研究
作者:高艳荣1,王建友1? ,刘红斌
单位: 1 南开大学 环境科学与工程学院,天津,300071
关键词: 双极膜;电渗析;氢氧化钠;盐酸
出版年,卷(期):页码: 2014,34(3):96-103

摘要:
采用国产双极膜、均相阴、阳离子交换膜交替排列构成的三隔室双极膜电渗析(BMED)构型,以NaCl为原料制备NaOH和HCl。研究了电流密度、原料液浓度和电极液浓度对BMED操作性能的影响,并对两种不同的均相阳膜进行了对比考察。结果表明:在电流密30 mA?cm-2, NaCl原料液浓度为1.5 mol?L-1的条件下,实验考察的220 min内NaOH的收率可达80.19 %,其收率和能耗随电流密度的增大而增加;电流密度恒定时,较高的原料液浓度利于保持更小的膜堆电阻,过程能耗相应降低;本实验条件下,极室Na2SO4的浓度在1 %~2 %的低浓度范围内效果优于3 %~4 %的高浓度范围。实验进一步采用向原料室持续补充10 % NaCl的操作,5 h后产品NaOH浓度可达10 %左右,其浓度是一次性添加原料操作时得到的2.5倍。
A bipolar membrane electrodialysis (BMED) stack with three compartments was adopted to directly produce sodium hydroxide and hydrochloric acid by sodium chloride splitting. Effects of current density, feed concentration and electrode compartment concentration on the BMED performances were well investigated. Also the influences of two different kinds of cation-exchange membranes were compared with each other. The results exhibited that with current density of 30 mA?cm-2 and 1.5 mol?L-1 NaCl solution, the conversion rate of NaOH could achieve 80.19 % in 220 min. The conversion rate and energy consumption increased as the current density increased. At the constant current density, the resistance of the stack reduced as NaCl concentration increased, and the energy consumption reduced accordingly. The concentration of electrode compartment with low concentration (1 %~2 %) was better than high concentration (3 %~4 %) in this condition. Furthermore, 10 % NaCl was supplied to the feed compartment continually, the concentration of product NaOH can reach 10 %, which was 2.5 times compared with the one-time addition of NaCl.
高艳荣(1988-),女,硕士研究生,E-mail: gaoyanronghao@126.com

参考文献:
[1] 徐铜文,汪志武. 双极膜的理论及应用展望[J]. 水处理技术,1998,24(1):20-25.
[2] 徐铜文,傅荣强.双极膜技术手册[M].北京:化学工业出版社,2004.
[3] J.S.Jaime Ferrer, S.Laborie, G.Durand, M.Rakib. Formic acid regeneration by electromembrane processes. Journal of Membrane Science,2006,280(1-2):509-516.
[4] J.S.Jaime Ferrer, E.Couallier, P.Viers, et al. Two-Compartment bipolar membrane electrodialysis for splitting of sodium formate into formic acid and sodium hydroxide, modeling. Journal of Membrane Science,2009,328(1-2):75-80.
[5] Zhang Kai, Wang Meng, Wang Duo, et al. The energy-saving production of tartaric acid using ion exchange resin-filling bipolar membrane electrodialysis. Journal of Membrane Science. 2009,341:246-251.
[6] Huang Chanhui, Xu Tongwen, Zhang Yaping, et al. Application of electrodialysis to production of organic scids: state-of the-art and rescent developments. Journal of Membrane Science,2007,288:1-12.
[7] Xu Tongwen, Yang Weihua. Citric acid production by electrodialysia with bipolar membranes. Chemical engineering and processing.2002,41:519-524.
[8] Wang Xiaolin, Wang Yanming, Zhang Xu, et al. In situ combination of fermentation and electrodialysis with bipolar membranes for the production of lactic acid: Operational compatibility and uniformity. Bioresource Technology,2012,125:165-171.
[9] Zhu Xiuping, Hatzeel Marta C, Cusick Roland D, et al. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production. Electrochemistry Communications.2013,31:52-55.
[10] Shen Jiangnan, Yu Jie, Huang Jie, et al. Preparation of highly pure tetrapropyl ammonium hydroxide using continuous bipolar membrane electrodialysis. Chemical Engineering Jounal.2013,220:311-319.
[11] Novalic S, Okwor J, Kulbe K D. The characteristics of citric acid separation using electrodialysis with bipolar membrane [J]. Desalination,1996,105(3):277-282.
[12] Marie-Laure Lameloise, Richard Lewandowski. Recovering L-malic acid from a bererage industry waste water: Experimental study of the Conversion stage using bipolar membrane electrodialysis. Journal of Membrane Science,2012,403-404:196-202.
[13] Ben Ali Ma, Rakib M, Laborie S, et al. Coupling of bipolar membrane electrodialysis and ammonia stripping for direct treatment of wastwaters containing ammonium nitate. Journal of Membrane Science.2004,244(1-2):89-96.
[14] Zhang X Y, Lu W H, Yang P B, et al. Application of response surface methodology to optimize the operation process for regeneration of acid and base using bipolar membrane electrodialysis. Journal of Chemical Technology and Biotechnology.2008,83:12-19.
[15] 崔树军,韩惠茹,邓会宁,袁俊生.海水淡化副产浓海水综合利用方案的探讨[J].盐化与工业,2007,37(1):36-38.
[16] 麻炳辉,白永浩.海水淡化后浓海水工厂化制盐浅析[J].盐化与工业,2013,42(4):25-30.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号