等离子改性PVDF超滤膜在MBR中耐污染性能研究
作者:李鹏1,杨庆123,丁昀1,刘俊洁1,拓鑫鑫1,马岩红1
单位: 1. 兰州交通大学环境与市政工程学院;
关键词: 等离子体;PVDF;MBR;滤饼层
出版年,卷(期):页码: 2014,34(3):110-115

摘要:
对聚偏氟乙烯(PVDF)中空纤维超滤膜进行丙烯酸(Acrylic Acid,AA)等离子体化学沉积改性,傅里叶衰减全反射红外光谱(FT-IR)、扫描电镜(SEM)、能谱仪(EDS)及力学性能试验分析表明,膜表面引入了羧基,成功接枝了AA聚合单体,且改性膜柔韧性得到提高,改性后膜清水通量增加了12.04%-16.12%。采用浸没式MBR反应器,在气水比为20:1条件下对改性膜与原膜进行平行对比实验,实验表明,表面性能的改变可有效阻碍滤饼层污染物在膜表面沉积与压实。经水力及化学清洗后,改性膜通量恢复率都略高于原膜,抗滤饼层污染的能力得到提高。改性膜与原膜出水浊度均为0NTU,COD去除率数据表明改性膜出水效果略优于原膜。
Polyvinylidene fluoride (PVDF) hollow fiber ultrafiltration membrane was modified by acrylic acid (AA) plasma chemical sedimentary. The experiments of fourier attenuated total reflection infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), EDS and mechanical properties test analysis showed that after modified, there were some carboxyl in the membrane surface, and AA monomer was grafted successfully. Meanwhile, the flexibility of modified membrane was improved, and water flux increased by 12.04%-16.12%. Using submerged MBR reactor, gas-water ratio with 20:1,the modified membrane and the original membrane were made parallel contrast experiment. The result showed that the change of surface properties of membrane can hinder sedimentary and compacting of cake layer pollutants effectively on the membrane surface. After hydraulic and chemical cleaning, the flux recovery rate of modified membrane flux recovery rate is slightly higher than the original film, so the ability of resistance cake layer pollutants modified membrane is stronger than original membrane. The effluent turbidity of membrane and original membrane were 0 NTU, and the COD removal rate showed that the water effect of modified membrane is better than the original membrane.
李鹏(1990-),男,甘肃定西,工学硕士,研究方向为水处理技术;联系方式:15117022708,E-mail:liplzjtu@126.com. *通讯作者:杨庆(1974—),男,教授;研究方向为水处理技术;联系方式:13993148205,E-mail:yangq@mail.lzjtu.cn

参考文献:
[1] Bai R, Leow H F. Microfiltration of activated sludge wastewater-the effect of system operation parameters. [J]. Separation and Purification Technology, 2002, 29(2): 189-198.
[2] Yang Z Y. Use of Membrane in Wastewater Treatment in China. Experiments with Hollow Fiber Membranes in a Bioreactor. [J]. Stuttg Ber Siedlungs Wasser Wirtsch, 1997,145: 75-86.
[3] Hester J F, Mayes A M. Design and performance of foul-resistant poly (vinylidene fluoride) membranes prepared in a single-step by surface segregation. [J]. Journal of membrane science, 2002, 202(1): 119-135.
[4] Steen M L, Hymas L, Havey E D, et al. Low temperature plasma treatment of asymmetric polysulfone membranes for permanent hydrophilic surface modification. [J]. Journal of Membrane Science, 2001, 188(1): 97-114.
[5] Choo K H, Lee C H. Hydrodynamic behavior of anaerobic biosolids during crossflow filtration in the membrane anaerobic bioreactor. [J]. Water Research, 1998, 32(11): 3387-3397.
[6] Howell J A. Sub-critical flux operation of microfiltration. [J]. Journal of Membrane Science, 1995, 107(1): 165-171.
[7] Iwata H, Hirata I, Ikada Y. Atomic force microscopic analysis of a porous membrane with pH-sensitive molecular valves. [J]. Macromolecules, 1998, 31(11): 3671-3678.
[8] Kovács K L, Maroti G, Rákhely G. A novel approach for biohydrogen production. [J]. International Journal of Hydrogen Energy, 2006, 31(11): 1460-1468.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号