多层界面聚合法制备质子传导膜研究
作者:郭伟男,吴旭冉,青格乐图,范永生,王保国
单位: 清华大学化学工程系,北京100084
关键词: 质子传导膜;多层界面聚合;电导率;离子选择性;结构电荷密度
出版年,卷(期):页码: 2014,34(4):6-11

摘要:
以多乙烯多胺类物质和均苯三甲酰氯为反应单体,采用多层界面聚合方法制备质子传导膜。在聚偏氟乙烯超滤膜表面进行多层界面聚合反应形成离子选择性分离膜,该膜具有质子传导能力和VO2+离子阻隔能力。通过系统研究水相溶液中单体种类对质子传导膜性能的影响,结果表明以四乙烯五胺为水相单体制得的质子传导膜电化学性能较优,其电导率达到8.0×10-3S/cm;VO2+离子扩散系数降低了一个量级,达到2.4×10-12m2/s;离子选择性系数60,较改性前提高2.2倍。研究发现膜的离子选择性和膜致密层高分子链结构电荷密度之间存在相关性。 
Layer-by-layer interfacial polymerization method was used to form super-thin selective layer on PVDF ultrafiltration membrane surface, using polyethylene polyamine and 1,3,5-benzenetricarbonyl trichloride as reactants. The membranes show good permeaselectivity for proton conductivity and resistance to VO2+, membrane performances are highly affected by the species of hydrophilic monomer reactant. Membranes prepared with Tetraethylenepentamine as the hydrophilic monomer showed better electrochemical performance, of which the conductivity reaches 8.0×10-3S/cm, VO2+ diffusion coefficient decreases by 90 percent, ion selectivity increases by 2.2 times to 60. Moreover, the ion selectivity of this membrane is highly related with the charge density of the used monomer in interfacial polymerization processes. 
王保国,教授,清华大学化工系,010-62788777,bgwang@tsinghua.edu.cn

参考文献:
[1] Prifti H, Parasuraman A, Skyllas-Kazacos M, et al.Membranes for Redox Flow Battery Applications [J].Membranes, 2012, 2(2): 275-306
[2] 青格乐图,郭伟男,范永生等.全钒液流电池用质子传导膜研究进展[J].化工学报, 2013, 64(2): 427-435. 
[3] GancarzI,BryjakJ, NiakGP, et al. Plasma modified polymers as a support for enzyme immobilization II Amines plasma. Europe polymer journal, 39(2003)2217-2224
[4] CarrollT, BookerNA, Meier-HaackJ, Polyelectrolyte-grafted microfiltration membranes to control fouling by natural organic matter in drinking water. Journal of Membrane Science, 203(2002)3-13
[5] MatsumotoH, KoyamaY,TaniokaA, Interaction of proteins with weak amphoteric charged membrane surfaces: effect of pH, Journal of Colloid and Interface Science, 264(2003)82-88
[6] NieFQ, Xu ZK,HuangXJ, et al. Acrylonitrile-based Copolymer Membranes Containing Reactive Groups: Surface Modification by the Immobilization of Poly(ethylene glycol) for Improving Antifouling Property and Biocompatibility, Langmuir, 19(2003)9889-9895
[7] ZhangXi, ChenHuan,ZhangHongyu. Layer-by-layer assembly: from conventional to unconventional methods.Chem. Commun., 2007, 1395–1405
[8] Song Yujun,LinFuan,SunBenhui.Preparation, characterization,and application of thinfilm composite nanofiltration membranes[J].Journal of Applied Polymer Science,2005,95:1251-1261
[9] VerissimoS,PeinemannK-V,BordadoJ.Influence of the diamine structure on thenanofiltration performance,surface morphology and surface charge of the compositepolyamide membranes[J].Journal of Membrane Science,2006,279:266-275
[10] 金丽梅,于水利,时文歆等. 基于树状分子聚酰胺-胺(PAMAM)的复合纳滤膜制备及性能研究[J/OL]. 高校化学工程学报, 2012, http://www.cnki.net/kcms/detail/33.1141.T
Q.20121101.1351.001.html
[11] Qiu JY, Zhang JZ, ChenJH, et al. Amphoteric ion exchange membrane synthesized by radiation-induced graft copolymerization of styrene and dimethylaminoethyl methacrylate into PVDF film for vanadium redox flow battery applications.J. Membr. Sci., 334 (2009), pp. 9–15
[12] BrownL, LanyiJ. Determination of the transiently lowered pKa of theretinal Schiff base during the photocycle of bacteriorhodopsin[J].Proc.Natl.Acad.Sci.USA 1996,93,1731-1734.
[13] TittorJ, SchweigerU, OesterheltD, etc. Inversion of proton translocation in bacteriorhodopsin mutantsD85N,D85T,and D85,96N[J].Biophys.J.1994,67,1682-1690.
[14] KataokaM,KamikuboH, TokunagaF, et al.Energy coupling in an ion pump.Thereprotonation switch of bacteriorhodopsin[J].J.Mol.Biol.1994,243,621-638.
[15] GoodmanS, JacobsenE. A Practical Synthesis ofα,β-Unsaturated Imides,Useful Substrates For Asymmetric Conjugate Addition Reactions.AdvancedSynthesis&Catalysis 2002,344(9),953-956.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号