TiO2/MWNTs/Al2O3复合分离膜的制备及其水处理性能
作者:李焕霞, 赵焕新, 于洪涛, 陈硕, 全燮
单位: 大连理工大学环境学院教育部工业生态与环境工程重点实验室,大连116024
关键词: TiO2;MWNTs;陶瓷膜;化学气相沉积;腐植酸
出版年,卷(期):页码: 2014,34(4):26-32

摘要:
以氧化铝陶瓷膜为基底,采用化学气相沉积法制备了具有光催化性能的TiO2/多壁碳纳米管(MWNTs)/Al2O3复合分离膜,通过控制TiO2的沉积时间实现对膜孔径的有效调控。实验结果表明,当化学气相沉积时间为10 min时,复合膜具有较好的纯水通量、截留性能和光催化性能。根据紫外漫反射谱图(DRS)分析,TiO2/MWNTs/Al2O3复合分离膜比单独的TiO2/Al2O3复合分离膜具有更好的光吸收性能,能量色散X射线光谱(EDX)的元素分布图显示TiO2纳米颗粒均匀分布于复合膜表面。以浓度为15 mg?L-1的腐植酸为目标物,考察了复合光催化膜的水处理性能,结果表明,光催化与膜分离耦合工艺可以显著提高有机污染物的去除效率,60 min内对腐植酸的去除率可达80.9%,相比于单独的膜分离工艺高12.2%;同时能够有效缓解膜面污染,连续运行5 h后,耦合工艺下复合膜的渗透通量比单独膜分离高70.9%。
 TiO2/Multi-Walled Nanotubes(MWNTs)/Al2O3 composite membrane was successfully fabricated by a two-step approach involving vacuum filtration of MWNTs suspension followed by chemical vapor deposition (CVD) of TiO2. The pore size of the as-prepared membrane was controlled by the deposition time of TiO2.Considering membrane flux and rejection as well as photocatalytic performance of composite membrane, the optimal deposition time of TiO2 was determined to be 10 min according to the experimental results. DRS results showed that TiO2/MWNTs/Al2O3 composite membrane exhibited better UV light absorption than bare TiO2/Al2O3 composite membrane. EDX map demonstrated that TiO2 was distributed well on the surface of interweaving MWNTs membrane. 15 mg?L-1 of Humic Acid (HA) was used as a target pollutant to investigate the water treatment performance of the composite photocatalytic membrane. By coupling membrane separation with photocatalysis technique, the removal efficiency of HA was 80.9% within 60 min, which was improved 12.2% when compared to membrane separation alone during the same time. HA permeate ?ux of ?ltration with UV light irradiation was 70.9% higher than that without UV after 5 h running, thus indicating good antifouling property of the composite membrane.
李焕霞(1988-),女,湖北武汉市人,硕士研究生,主要从事光催化膜水处理技术的研究,Email:lihuanxia1988 @126.com.*通讯作者,Email:shuochen@dlut.edu.cn

参考文献:
[1] 徐南平,邢卫红,王沛.无机膜在工业废水处理中的应用与展望.[J].膜科学与技术,2000,20(03):23~28.
[2] 白晓琴,赵英,顾平.膜分离技术在饮用水处理中的应用.[J].水处理技术,2005,31(09):1~5.
[3] AWWA Membrane Technology Research Committee. Committee report: recent advances and research needs in membrane fouling.[J]. J Am Water Works Ass, 2005, 97(8): 79~89.
[4] Carp O, Huisman C, Reller A. Photoinduced reactivity of titanium dioxide.[J]. Prog Solid State Chem,2004,32(1):33~177.
[5] Chen X, Mao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications.[J]. Chem Rev, 2007, 107(7): 2891~2959.
[6] Berger T, Sterrer M, Diwald O, et al. Light-induced charge separation in anatase TiO2 particles.[J]. J Phys Chem B, 2005, 109 (13): 6061~-6068.
[7] Umebayashi T, Yamaki T, Itoh H, et al. Band gap narrowing of titanium dioxide by sulfur doping.[J]. Appl Phys Lett, 2002, 81(3): 454~456.
[8] Yu J C, Yu J, Ho W, et al. Effects of F-doping on the photocatalytic activity and microstuctures of nanocrystalline TiO2 powders.[J]. Chem Mater, 2002, 14(9): 3808~3816.
[9] Burda C, Lou Y, Chen X, et al. Enhanced nitrogen doping in TiO2 nanoparticles.[J]. Nano Lett, 2003, 3(8): 1049~1051.
[10] Etgar L, Moehl T, Gabriel S, et al. Light energy conversion by mesoscopic PbS quantum dots/TiO2 heterojunction solar cells.[J]. ACS Nano, 2012, 6(4): 3092~3099.
[11] Yu H, Quan X, Chen S, et al. TiO2-multiwalled carbon nanotube heterojunction arrays and their charge separation capability.[J]. J Phys ChemC, 2007, 111(35): 12987~12991.
[12] Gao B, Kim Y J, Chakraborty A K, et al. Efficient decomposition of organic compounds with FeTiO3/TiO2 heterojunction under visible light irradiation.[J]. Appl CatalB, 2008, 83(3): 202~207.
[13] Brahimi R, Bessekhouad Y, Bouguelia A, et al. CuAlO2/TiO2 heterojunction applied to visible light H2 production.[J]. J Photochem Photobiol A Chem, 2007, 186(2): 242~247.
[14] Bak T, Bogdanoff P, Fiechter S, et al. Defect engineering of titanium dioxide: full defect disorder.[J]. AdvApplCeram, 2012, 111(1-2): 1~2.
[15] 于洪涛,全燮.纳米异质结光催化材料在环境污染控制领域的研究进展.[J].化学进展,2009,21(2/3): 406~419.
[16] Kongkanand A, Kamat P V. Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor–SWCNT suspensions.[J]. ACS Nano, 2007, 1(1): 13~21.
[17] Dong W, Cogbill A, Zhang T, et al. Multifunctional, catalytic nanowire membranes and the membrane-based 3D devices.[J]. J Phys ChemB, 2006, 110(34): 16819~16822.
[18] Richardson S D, Thruston A D, Rav-Acha C, et al. Tribromopyrrole, brominated acids, and other disinfection byproducts produced by disinfection of drinking water rich in bromide.[J]. EnvironSciTechnol, 2003, 37(17): 3782~3793.
[19] Yuan W, Zydney A L. Humic acid fouling during microfiltration [J]. J Memb Sci, 1999, 157(1): 1~12.
[20] Nakao S. Determination of pore size and pore size distribution: 3. Filtration membranes. [J]. J Memb Sci, 1994, 96(1): 131~165.
[21] Yang MQ, Zhang N, Xu YJ. Synthesis of fullerene–, carbon nanotube–, and graphene–TiO2nanocomposite photocatalysts for selective oxidation: acomparative study.[J]. ACSAppl Mater Interfaces, 2013, 5(3): 1156~1164.
[22] Ma L, Chen A, Zhang Z, et al. In-situ fabrication of CNT/TiO2 interpenetrating network film on nickel substrate by chemical vapour deposition and application in photoassisted water electrolysis.[J]. Catal Commun, 2012, 21:27~31.
[23] Zhang X, Du A J, Lee P, et al. TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water.[J]. J Memb Sci, 2008, 313(1): 44~51.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号