聚苯并咪唑(PBI)渗透汽化膜的研究进展
作者:夏玲玲,王艳
单位: 华中科技大学化学与化工学院 武汉430074
关键词: PBI膜;渗透汽化分离;改性;膜形态
出版年,卷(期):页码: 2014,34(5):116-124

摘要:
聚苯并咪唑(PBI, polybenzimidazole)是一种高性能芳香族聚合物材料。由于具有突出的耐化学性、热稳定性和机械性能,以及良好的亲水性和可纺性, PBI成为一种很有前途的渗透汽化分离膜材料。本文综述了用于渗透汽化的PBI分离膜的研究进展,扼要介绍了PBI渗透汽化膜几种不同的形态,包括致密平板膜、单层中空纤维膜、双层中空纤维膜以及混合基质膜,并对不同形态的PBI膜进行了对比;同时也阐述分析了交联、表面改性、共混、填充等多种改性方法以及其对膜分离性能的影响。基于上述讨论,本文最后对PBI渗透汽化膜的发展方向和研究前景进行了总结。
As a high performance aromatic polymeric material, PBI owns outstanding chemical resistance, mechanical and thermal stability. The high hydrophilicity, rigid chemical structure and good spinnability make PBI a promising membrane material for pervaporation dehydration. Recently more and more PBI membranes have been reported for pervaporation applications, including the dehydration of ethylene glycol, acetone, acetic acid, and other organics, as well as some organic-organic separation. The recent research progress in PBI pervaporation membranes is summarized in this short review. PBI membranes of different morphologies (flat-sheet, single- and dual-layer hollow fiber, and mixed matrix membranes) are briefed and compared among themselves and with other polymeric membranes. Various modification methods, including crosslinking, surface modification, blending, and thermal treatment, are also discussed and their influences on the membrane performance are analyzed. Finally the future development and potential application of the PBI pervaporation membranes are summarized based on the above analysis. PBI membranes are shown to be an excellent candidate as pervaporation membranes, for both organic dehydration and organic-organic separation. 
王艳(1975-),女,安徽巢湖人,博士生导师,青年千人,主要从事膜材料的开发研究,E-mail: wangyan@hust.edu.cn 夏玲玲(1990-),女,湖北省随州人,本科,研究助理,主要从事渗透汽化膜性能的研究,E-mail: xialingling1990@gmail.com

参考文献:
[1] Chung T S, Guo W F, Liu Y. Enhanced matrimid mebranes for pervaporation by homogenous blends with polybenzimidazole (PBI) [J]. J Membr Sci, 2006, 271(1-2):221-231.
[2] Huang Y, Ly J, Nguyen D, et al. Ethanol dehydration using hydrophobic and hydrophilic polymer membranes [J]. Ind Eng Chem Res, 2010, 49(23):12067-12073.
[3] Veen H M, Rietkerk M D A, Shanahan D P, et al. Pushing membrane stability boundaries with HybSi® pervaporation membranes [J]. J Membr Sci, 2011, 380(1-2):124-131.
[4] Xiangli F J, Wei W, Chen Y W, et al. Optimization of preparation conditions for polydimethylsiloxane (PDMS)/ceramic composite pervaporation membranes using response surface methodology [J]. J Membr Sci, 2008, 311(1-2):23-33.
[5] Vane L M. Separation technologies for recovery and dehydration of alcohols from fermentation broths [J]. Biofuels Bioprod Biorefin, 2008, 2(6):553–588.
[6] Shi G M, Wang Y, Chung T S. Dual-layer PBI/P84 hollow fibers for pervaporation dehydration of acetone [J]. AIChE Journal, 2012, 58(4):1133-1145.
[7] Wang Y, Goh S H, Chung T S. Miscibility study of Torlon® polyamide-imide with Matrimid® 5218 polyimide and polybenzimidazole [J]. Polymer, 2007, 48(10):2901-2909.
[8] Jones D J , Rozière J. Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications [J]. J Membr Sci, 2001, 185(1): 41–58.
[9] Neuse E W. Aromatic polybenzimidazoles: syntheses, properties, and applications [J]. Adv Polym Sci, 1982, 47(0):1-42.
[10] Buckley A, Stuetz D, Serad G A. Polybenzimidazoles, Encyclopedia of Polymer Science and Engineering [M]. New York, Wiley, 1987, 572-601.
[11] Chung T S. A critical review of polybenzimidazoles: historical development and future R & D [J]. J Macromol Sci Rev Macromol Chem Phys C, 1997, 37(2):277-301.
[12] Jaffe M, Chen P, Choe E W, et al. High performance polymer blends [J]. Adv Polym Sci, 1994, 117(0):297-327.
[13] Samms S R, Wasmus S, Savinell R F. Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments [J]. J Electrochem Soc, 1996, 143(4):1225–1232.
[14] Bouchet R, Siebert E. Proton conduction in aciddoped polybenzimidazole [J]. Solid State Ionics, 1999, 118(3-4):287–299.
[15] Glipa X, Bonnet B, Mula B, et al. Investigation of the conduction properties of phosphoric and sulfuric acid doped polybenzimidazole [J]. J Mater Chem, 1999, 9(0): 3045–3049.
[16] Model F S, Lee L A. An investigation of PBI hollow fiber reverse osmosis membranes [J]. Org Coat Plast Chem, 1972, 32(0): 383-422.
[17] Model F S, Lee L A. PBI reverse osmosis membranes: an initial survey, Reverse Osmosis Membrane Research [M]. New York, Londale H K, Podall H E, 1972, 285-297.
[18] Model F S, Davis H J, Sessa P A. Preparation and evaluation of optimized hemodialysis membranes, Annual Report [R]. NIH-NIAMDD-73-2200, US: Dept. of Health, Education and Welfare, 1973.
[19] Brinegar W C. Production of semipermeable PBI membranes [P]. US, Patent:3841492, 19741015.
[20] Sawyer L C, Jones R S. Observation on the structure of first generation PBI reverse osmosis membranes [J]. J Membr Sci, 1984, 20(2):147-166.
[21] Bower E A, Rafalko J J. Process for modifying polybenzimidazole polymers with ethylene carbonate [P]. US, Patent:4599388, 19860708.
[22] Sansone M J. N-Substituted polybenzimidazole polymer [P]. US, Patent:4898917, 19900206.
[23] Calundann G W, Chung T S. Fabrication of microporous PBI membranes with narrow pore size distribution [P]. US, Patent:5091087, 19920225.
[24] Wang K Y, Chung T S. Fabrication of polybenzimidazole (PBI) nanofiltration hollow fiber membranes for removal of chromate [J]. J Membr Sci, 2006, 281(1-2):307-315.
[25] Wang K Y, Xiao Y C, Chung T S. Chemically modified polybenzimidazole nanofiltration membrane for the separation of electrolytes and cephalexin [J]. Chem Eng Sci, 2006, 61(17):5807-5817.
[26] Wang K Y, Chung T S, Qin J J. Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process [J]. J Membr Sci, 2007, 300(1-2):6-12.
[27] Wang K Y, Yang Q, Chung T S, et al. Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall [J]. Chem Eng Sci, 2009, 64(7):1577-1584.
[28] Sansone M J. Process for the production of polybenzimidazole ultrafiltration membranes [P]. US, Patent: 4693824, 19870915.
[29] Fu F J, Zhang S, Sun S P, et al. POSS-containing delamination-free dual-layer hollow fiber membranes for forward osmosis and osmotic power generation [J]. J Membr Sci, 2013, 443(0):144-155.
[30] Sadeghi M, Semsarzadeh M, Moadel H. Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nano particles [J]. J Membr Sci, 2009, 331(1-2): 21-30.
[31] Choi S, Coronas J, Lai Z, et al. Fabrication and gas separation properties of polybenzimidazole (PBI)/nanoporous silicates hybrid membranes [J]. J Membr Sci, 2008, 316(1-2):145-152.
[32] Wang K Y, Xiao Y C, Chung T S. Chemically modified polybenzimidazole nanofiltration membrane for the separation of electrolytes and cephalexin [J]. Chen Eng Sci, 2006, 61(7):5807-5817.
[33] Wang Y, Gruender M, Chung T S. Pervaporation dehydration of ethylene glycol through polybenzimidazole (PBI)-based membranes. 1. Membrane fabrication [J]. J Membr Sci, 2010, 363(1-2):149-159.
[34] Wang Y, Chung T S, Gruender M. Sulfonated polybenzimidazole membranes for pervaporation dehydration of acetic acid [J]. J Membr Sci, 2012, 415–416(0):486–495.
[35] Kung G Y, Jiang L Y, Wanga Y, et al. Asymmetric hollow fibers by polyimide and polybenzimidazole blends for toluene/iso-octane separation [J]. J Membr Sci, 2010, 360(1-2):303-314.
[36] Shi G M, Yang T, Chung T S. Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols [J]. J Membr Sci, 2010, (415-416):577-586.
[37] Shi G M, Chen H M, Jean Y C, et al. Sorption, swelling, and free volume of polybenzimidazole (PBI) and PBI/zeolitic imidazolate framework (ZIF-8) nano-composite membranes for pervaporation [J]. Polymer, 2013, 54(2):774-783.
[38] Wang K Y, Chung T S, Rajagopalan R. Dehydration of tetrafluoropropanol (TFP) by pervaporation via novel PBI/BTDA-TDI/MDI co-polyimide (P84) dual-layer hollow fiber membranes [J]. J Membr Sci, 2007, 287(1):60–66.
[39] Wang Y, Chung T S, Bernard W N, et al. Processing and engineering of pervaporation dehydration of ethylene glycol via dual-layer polybenzimidazole (PBI)/polyetherimide (PEI) membranes [J]. J Membr Sci, 2011, 378(1):339– 350.
[40] Brooks N W, Duckett R A, Rose J, et al. An NMR study of absorbed water in polybenzimidazole [J]. Polymer, 1993, 34(19):4038-4042.
[41] He T, Mulder M H V, Strathmann H, et al. Preparation of composite hollow fiber membranes: co-extrusion of hydrophilic coatings onto porous hydrophobic support structures [J]. J Membr Sci, 2002, 207(2):143-156.
[42] Li D F, Chung T S, Wang R, et al. Fabrication of fluoropolyimide/ polyether sulfone dual-layer asymmetric hollow fiber membranes for gas separation [J]. J Membr Sci, 2002, 198(2):211-223.
[43] Liu Y, Chung T S, Li D F, et al. High-selectivity, antiplasticization cross-linked polyimide/polyethersulfone dual-layer hollowfiber membranes [J]. Ind Eng Chem Res, 2003, 42(6):1190-1195.
[44] Jiang L Y, Chung T S, Li D F, et al. Fabrication of Matrimid/polyethersulfone dual-layer hollow fiber membranes for gas separation [J]. J Membr Sci, 2004, 240(1-2):91-103.
[45] Li D F, Chung T S, Wang R. Morphological aspects and structure control of dual-layer asymmetric hollow fiber membranes formed by a simultaneous co-extrusion approach [J]. J Membr Sci, 2004, 243(1-2):155-175.
[46] Li Y, Chung T S, Huang Z, et al. Dual-layer polyethersulfone (PES)/BTDA-TDI/MDI co-polyimide (P84) hollow fiber membranes with a submicron PES–zeolite beta mixed matrix dense-selective layer for gas separation. [J]. J Membr Sci, 2006, 277(1-2):28-37.
[47] Chen F R, Chen H F. Pervaporation separation of ethylene glycol–water mixtures using crosslinked PVA–PES composite membranes. 1. Effects of membrane preparation conditions on pervaporation performances [J]. J Membr Sci, 1996, 109(2):247-256.
[48] Nik O G, Moheb A, Mohannnnadi T. Separation of ethylene glycol/water mixtures using NaA zeolite membranes [J]. Chem Eng Technol, 2006, 29(11):1340-1346.
[49] Guo R L, Hu C L, Pan F S, et al. PVA-GPTMS/TEOS hybrid pervaporation membrane for dehydration of ethylene glycol aqueous solution [J]. J Membr Sci, 2006, 281(1-2):454-462.
[50] Guo R L, Hu C L, Li B, et al. Pervaporation separation of ethylene glycol/water mixtures through surface crosslinked PVA membranes: coupling effect and separation performance analysis [J]. J Membr Sci, 2007, 289(1-2):191-198.
[51] Hu C L, Guo R L, Li B, et al. Development of novel mordenite-?lled chitosan–poly(acrylic acid) polyelectrolyte complex membranes for pervaporation dehydration of ethylene glycol aqueous solution [J]. J Membr Sci, 2007, 293(1-2):142-150.
[52] Hu C L, Li B, Guo R L, et al. Pervaporation performance of chitosan–poly(acrylic acid) polyelectrolyte complex membranes for dehydration of ethylene glycol aqueous solution [J]. Sep Purif Technol, 2007, 55 (3) 327-334.
[53] Guo R L, Ma X C, Hu C L, et al. Novel PVA-silica nanocomposite membrane for pervaporative dehydration of ethylene glycol aqueous solution [J]. Polymer, 2007, 48(10):2939-2945.
[54] Hyder M N, Huang R Y M, Chen P. Composite poly(vinyl alcohol)–poly(sulfone) membranes crosslinked by trimesoyl chloride: characterization and dehydration of ethylene glycol–water mixtures [J]. J Membr Sci, 2009, 326(2):363-371.
[55] Kulprathipanja S, Neuzil R W, Li N N. Separation of fluids by means of mixed matrix membranes [P]. US, patent: 4740219, 1988.
[56] Chung T S, Jiang L Y, Li Y, et al. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation [J]. Prog Polym Sci, 2007, 32(4):483–507.
[57] Lai J Y, Yin Y L, Lee K R. Chemically-modi?ed poly(4-methyl-pentene) membrane for pervaporation separation of acetic-acid water mixtures [J]. Polym J, 1995, 27:813–818.
[58] Al-Ghezawi N, Sanli O, Aras L, et al. Separation of acetic acid–water mixtures through acrylonitrile grafted poly(vinyl alcohol) membranes by pervaporation [J]. Chem Eng Process, 2005, 44(1):51–58.
[59] Kariduraganavar M Y, Kulkarni S S, Kittur A A. Pervaporation separation of water–acetic acid mixtures through poly(vinyl alcohol)-silicone based hybrid membranes [J]. J Membr Sci, 2005, 246(1):83–93.
[60]  Isiklan N, Sanli O. Separation characteristics of acetic acid–water mixturesby pervaporation using poly(vinyl alcohol) membranes modi?ed with malic acid [J]. Chem Eng Process, 2005, 44(9):1019–1027.
[61] Chen J H, Liu Q L, Zhu A M, et al. Dehydration of acetic acid by pervaporation using SPEK-C/PVA blend membranes [J]. J Membr Sci, 2008, 320(1-2):416–422.
[62] Chen J H, Liu Q L, Xiong Y, et al. Composite membranes prepared from glutaraldehyde cross-linked sulfonated cardo polyetherketone and its blends for the dehydration of acetic acid by pervaporation [J]. J Membr Sci, 2008, 325(1):184–191.
[63] Rhim J W, Yoon S W, Kim S W, et al. Pervaporation separation and swelling measurement of acetic acid-water mixtures using crosslinked PVA membranes [J]. J Appl Polym Sci, 1997, 63(4):521–527.
[64] Huang R Y M, Yeom C K. Development of cross linked poly(vinyl alcohol) (type II) and permeation of acetic acid-water mixtures [J]. J Membr Sci, 1991, 62(1):59–73.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号