在聚砜膜表面接枝聚合对苯乙烯磺酸钠及接枝膜对两种含氮杂环类农药吸附特性的研究
作者:刘海,高保娇﹡,孙世雄
单位: 中北大学 化学工程系,太原030051
关键词: 聚砜; 接枝膜;对苯乙烯磺酸钠;表面引发;接枝聚合;农药残留物
出版年,卷(期):页码: 2015,35(1):123-130

摘要:
首先使用氯甲基化试剂使聚砜(PSF)得以氯甲基化,制得氯甲基化聚砜CMPSF, 然后流延成膜, 制得CMPSF铸膜, 在此基础上使CMPSF膜与乙二胺(EDA)反应, 得到表面键合有EDA的氨基化膜AMPSF. 在水溶液体系中加入过硫酸盐, 构建氨基/过硫酸盐 (-NH2/S2O82-) 表面引发体系, 使对苯乙烯磺酸钠(SSS)在基膜AMPSF表面发生接枝聚合, 制得了接枝膜PSF-g-PSSS. 较深入地考察了主要因素对膜接枝过程的影响, 优化了接枝聚合条件. 采用红外光谱(FTIR)、光学显微镜(OM)及称重等法对接枝膜PSF-g-PSSS进行了表征. 最后, 考察研究了接枝膜对抗蚜威和阿特拉津两种含氮杂环农药化合物的吸附特性. 实验研究结果表明, 采用-NH2/S2O82-表面引发体系, 可以顺利地实施SSS在PSF膜表面的接枝聚合, 接枝度随氨基化膜AMPSF表面氨基键合量的增大而增大, 适宜的接枝聚合温度为70 ℃, 溶液中适宜的过硫酸盐浓度为单体质量的0.3%. 在适宜的条件下可制得PSSS接枝度为1.23 mg/cm2的接枝膜. 凭借强烈的静电相互作用, 功能接枝膜PSF-g-PSSS对抗蚜威和阿特拉津两种含氮杂环农药可产生强烈的吸附作用.
Chloromethylated polysulfone (CMPSF) was first prepared by using chloromethylation reagent, and then the CMPSF membrane was casted. Subsequently, CMPSF membrane was aminated with ethanediamine (EDA) as reagent, and amino groups were introduced onto the surface of PSF membrane, obtained the amination membrane AMPSF. On this basis, a surface-initiating system was constituted by the amino group -NH2 on the surface of AMPSF membrane and peroxysulphate in the aqueous solution, and it initiated sodium p-styrenesulfonate (SSS) to be graft-polymerized, obtaining the grafted membrane PSF-g-PSSS. The effects of main factors on the graft-polymerization were investigated in depth, and the reaction conditions were optimized. The grafted membrane PSF-g-PSSS was characterized by infrared spectroscopy (FTIR) and optical microscope (OM) as well as weight method. Finally, the adsorption characters of the grafted membrane PSF-g-PSSS for two nitrogen-containing heterocyclic ring pesticides, pirimicarb and atrazine, were examined. The experimental results show that by using surface-initiating system of amino group/peroxysulphate, the graft-polymerization of SSS on the surface of PSF membrane can be successfully realized, and the grafting degree of PSSS increases with the content of amino group on the basement membrane AMPSF. The suitable temperature for the graft-polymerization of SSS is 70 ℃, and the appropriate concentration of the initiator peroxysulphate in the solution is 0.3% of the monomer mass. Under the optimum conditions, the grafted membrane PSF-g-PSSS with a PSSS grafting degree of 1.23 mg/cm2 can be gained. By right of strong electrostatic interaction between host and guest, the grafted membrane can produce strong adsorption action for pirimicarb and atrazine molecules.
刘海(1988-),男,陕西咸阳人,硕士生,研究方向为功能复合膜的制备及性能研究. *通讯作者 , E-mail:gaobaojiao@126.com

参考文献:

[1] Deng H Y, Xu Y Y, Chen Q C, et al. High flux positively charged nanofiltration membranes prepared by UV-initiated graft polymerization of methacrylatoethyl trimethyl ammonium chloride (DMC) onto polysulfone membranes[J]. Journal of Membrane Science, 2011, 366 (1-2): 363–372.
[2] Wang W, Huang X J, Cao J D, et al. Immobilization of sodium alginate sulfates on polysulfone ultrafiltration membranes for selective adsorption of low-density lipoprotein[J]. Acta Biomaterialia, 2014, 10 (1): 234–243.
[3] Yi Z, Zhu L P, XuY Y, et al. Polysulfone-based amphiphilic polymer for hydrophilicity and fouling-re-sistant modification of polyethersulfone membranes[J]. Journal of Membrane Science, 2010, 365 (1-2): 25–33.
[4] Yue W W, Li H J, Xiang T, et al. Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility[J]. Journal of Membrane Science, 2013, 446: 79–91.
[5] Hesampour M, Huuhilo T, Mäkinen K, et al. Grafting of temperature sensitive PNIPAAm on hydrophilised polysulfone UF membranes[J]. Journal of Membrane Science, 2008, 310 (1-2): 85–92
[6] Bayramo?lu G, Yalç?n E, Ar?ca M Y. Characterization of polyethylenimine grafted and Cibacron Blue F3GA immobilized poly(hydroxyethylmethacrylate-co-glycydylmethacrylate) membranes and application to bilirubin removal from human serum[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 264 (1-3): 195–202.
[7] Park J Y, Acar M H, Akthakul A, et al. Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes[J]. Biomaterials, 2006, 27 (6): 856–865.
[8] Sherazi T A, Guiver M D, Kingston D, et al. Radiation-grafted membranes based on polyethylene for direct methanol fuel cells[J]. Journal of Power Sources, 2010, 195 (1): 21–29.
[9] Hu J, Zhang C X, Cong J, et al. Plasma-grafted alkaline anion-exchange membranes based on polyvinyl chloride for potential application in direct alcohol fuel cell [J]. Journal of Power Sources, 2011, 196 (10): 4483–4490.
[10] Hua H L, Li N, Wu L L, et al. Anti-fouling ultrafiltration membrane prepared from polysulfone-graft-methyl acrylate copolymers by UV-induced grafting method[J]. Journal of Environmental Sciences, 2008, 20(5): 565–570.
[11] Patel R, Im S J, Ko Y T, et al. Preparation and characterization of proton conducting polysulfone grafted poly(styrene sulfonic acid) polyelectrolyte membranes [J]. Journal of Industrial and Engineering Chemistry, 2009, 15 (3): 299–303.
[12] Qiu J H, Zhang Y W, Zhang Y T, et al. Synthesis and antibacterial activity of copper-immobilized membrane comprising grafted poly(4-vinylpyridine) chains[J]. Journal of Colloid and Interface Science, 2011, 354 (1): 152–159.
[13] Chen Y W, Chen L, Nie H R, et al. Fluorinated polyimides grafted with poly(ethylene glycol) side chains by the RAFT-mediated process and their membranes[J]. Materials Chemistry and Physics,  2005, 94 (2-3): 195–201.
[14] Fan H, Wang C Z, Li Y X, et al. Preparation and anti-protein fouling property of δ -gluconolactone-modified hydrophilic polysulfone membranes[J]. Journal of Membrane Science, 2012, 415–416: 161–167.
[15] Gao J M, Kamnaing P, Kiyota T, et al. One-step purification of palmatine and its derivative dl -tetrahydropalmatine from Enantia chlorantha using high-performance displacement chromatography[J]. Journal of Chromatography A, 2008, 1208(1-2): 47–53.
[16] Xing X, Zhu X P, Li H N, et al. Electrochemical oxidation of nitrogen-heterocyclic compounds at boron-doped diamond electrode[J]. Chemosphere, 2012 ,86 :368–375.
[17] Lhomme L, Brosillon S, Wolbert D. Photocatalytic degradation of pesticides in pure water and a commercial agricultural solution on TiO2 coated media[J]. Chemosphere, 2008,70 : 381-386.
[18] Madsen H T, Søgaard E G. Applicability and modelling of nanofiltration and reverse osmosis for remediation of groundwater polluted with pesticides and pesticide transformation products. Separation and Purification Technology[J], 2014,125 :111–119.
[19] Ghaemi N, Madaeni S S, Alizadeh A, et al. Preparation, characterization and performance of polyethersulfone/organically modified montmorillonite nanocomposite membranes in removal of pesticides[J]. Journal of Membrane Science2011, 382 : 135– 147.
[20] Banasiak L J, Bruggen B Van der, Schäfer A. Sorption of pesticide endosulfan by electrodialysis membranes[J]. Chemical Engineering Journal, 2011,166 : 233–239.
[21] Plakas K V, Karabelas A J. Removal of pesticides from water by NF and RO membranes-A review[J]. Desalination, 2012,287: 255–265.
[22] Kiso Y, Sugiura Y, KitaoT, et al. Effects of hydrophobicity and molecular size on rejection of aromatic pesticides with nanofiltration membranes[J]. Journal of Membrane Science, 2001,192 :1–10.
[23] Bialk M, Prucker O, Rühe J. Grafting of polymers to solid surfaces by using immobilized methacrylates[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 198–200: 543-549.
[24] Amourad M, Kerdioudj H. Modification of the cation exchange resin properties by impregnation inpolyethyleneimine solutions Application to the separation of metallic ions[J]. Talanta, 2003, 60 (5): 991–1001.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号