基于配位作用的层层自组装正渗透膜及其制备方法
作者:魏桐 苏保卫
单位: 中国海洋大学化学化工学院,中国海洋大学海洋化学理论与工程技术教育部重点实验室
关键词: 层层自组装;正渗透膜;配位作用
出版年,卷(期):页码: 2015,35(5):35-41

摘要:
 基于金属离子配位作用,以聚丙烯腈(PAN)超滤膜作为基膜,利用聚乙烯亚胺(PEI)和聚苯乙烯磺酸钠(PSS)层层自组装制备了正渗透膜,研究了制备条件对成膜性能的影响,得到了最佳制膜条件:聚电解质PEI和PSS浓度均为1.00g/L,支撑电解质NaCl浓度为0.50M,配位剂CuCl2 浓度为0.20M,PEI溶液pH值为9.0,单层沉积时间为10min。在0.50M氯化镁溶液作为汲取液、进料液为去离子水的条件下,膜通量可以达到16.11LMH,反向盐通量为1.47gMH。
 
 A kind of layer by layer self-assembly forward osmosis (FO) membrane has been prepared based on metallic ion’s coordination interaction, using commercial polyacrylonitrile (PAN) ultrafiltration membrane as substrate membrane, polyethylene-imine (PEI) and sodium polystyrene sulfonate (PSS) as cationic and anionic polyelectrolytes, respectively. The impact of preparation conditions on the performance of the prepared membrane was extensively studied. Optimal preparation conditions were obtained, the concentrations of both PEI and PSS polyelectrolyte solutions are 1.00g/L, the NaCl concentration in each polyelectrolyte solutions is 0.50M, the CuCl2 concentration in PSS solutions is 0.20M, the pH of PEI solution is 9.0, and the deposition time in each polyelectrolyte solution is 10 min. Under the optimal preparation conditions, the pure water permeation flux can reach 16.11LMH, and the reverse salt permeation flux can decrease down to 1.47gMH using 0.50M MgCl2 as draw solution and DI water as feed solution. 
 
魏桐(1989~),内蒙古包头人,硕士研究生,研究方向:正渗透膜制备与应用技术

参考文献:
 [1] Kessler J O, Moody C D. Drinking water from sea water by forward osmosis[J]. Desalination, 1976, 18(3): 297-306.
[2] McCutcheon J R, McGinnis R L, Elimelech M. A novel ammonia-carbon dioxide forward (direct) osmosis desalination process[J]. Desalination, 2005, 174(1): 1-11.
[3] McGinnis R L, Elimelech M. Energy requirements of ammonia-carbon dioxide forward osmosis desalination[J]. Desalination, 2007, 207(1-3): 370-382.
[4] Choi Y, Choi J S, Oh H J, et al. Toward a combined system of forward osmosis and reverse osmosis for seawater desalination[J]. Desalination, 2009, 247(1-3): 239-246.
[5] Achilli A, Cath T Y, Childress A E. Power generation with pressure retarded osmosis: An experimental and theoretical investigation[J]. Journal of Membrane Science, 2009, 343(1-2): 42-52.
[6] Xu Y, Peng X Y, Tang C Y, et al. Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module[J]. Journal of Membrane Science, 2010, 348(1-2): 298-309.
[7] Jiao B, Cassano A, Drioli E. Recent advances on membrane processes for the concentration of fruit juices: a review[J]. Journal of Food Engineering, 2004, 63(3): 303-324.
[8] Garcia-Castello E M, McCutcheon J R, Elimelech M. Performance evaluation of sucrose concentration using forward osmosis[J]. Journal of Membrane Science, 2009, 338(1-2): 61-66.
[9] Tang C Y, She Q H, Lay C L, et al. Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration[J]. Journal of Membrane Science, 2010, 354(1-2): 123-133.
[10] Loeb S, Titelman L, Korngold E, et al. Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane[J]. Journal of Membrane Science, 1997, 129(2): 243-249.
[11] Cath T Y, Childress A E, Elimelech M. Forward osmosis: Principles, applications, and recent developments[J]. Journal of Membrane Science, 2006, 281(1-2): 70-87.
[12] Wang R, Shi L, Tang C Y Y, et al. Characterization of novel forward osmosis hollow fiber membranes[J]. Journal of Membrane Science, 2010, 355(1-2): 158-167.
[13] Tiraferri A, Yip N Y, Phillip W A, et al. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure[J]. Journal of Membrane Science, 2011, 367(1-2): 340-352.
[14] Wei J, Qiu C Q, Tang C Y Y, et al. Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes[J]. Journal of Membrane Science, 2011, 372(1-2): 292-302.
[15] Bui N, Lind M L, Hoek E M V, et al. Electrospun nanofiber supported thin film composite membranes for engineered osmosis[J]. Journal of Membrane Science, 2011, 385-386: 10-19.
[16] Zhang G J, Yan H H, Ji S L, et al. Self-assembly of polyelectrolyte multilayer pervaporation membranes by a dynamic layer-by-layer technique on a hydrolyzed polyacrylonitrile ultrafiltration membrane[J]. Journal of Membrane Science, 2007, 292(1-2): 1-8.
[17] Qi S, Li W Y, Zhao Y, et al. Influence of the properties of layer-by-layer active layers on forward osmosis performance[J]. Journal of Membrane Science, 2012, 423-424: 536-542.
[18] Duong P H H, Zuo J, Chung T. Highly crosslinked layer-by-layer polyelectrolyte FO membranes: Understanding effects of salt concentration and deposition time on FO performance[J]. Journal of Membrane Science, 2013, 427: 411-421.
[19] Qiu C, Qi S, Tang C Y. Synthesis of high flux forward osmosis membranes by chemically crosslinked layer-by-layer polyelectrolytes[J]. Journal of Membrane Science, 2011, 381(1-2): 74-80.
[20] Pardeshi P, Mungray A A. Synthesis, characterization and application of novel high flux FO membrane by layer-by-layer self-assembled polyelectrolyte[J]. Journal of Membrane Science, 2014, 453: 202-211.
[21] Qi S, Qiu C Q, Zhao Y, et al. Double-skinned forward osmosis membranes based on layer-by-layer assembly-FO performance and fouling behavior[J]. Journal of Membrane Science, 2012, 405-406: 20-29.
[22] Liu C, Fang W X, Chou S R, et al. Fabrication of layer-by-layer assembled FO hollow fiber membranes and their performances using low concentration draw solutions[J]. Desalination, 2013, 308: 147-153. 
[23] Bertrand P, Jonas A, Laschewsky A, et al. Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties[J]. Macromolecular rapid communications, 2000, 21: 319-348.
[24] Lee H. Adsorption of ordered zirconium phosphonate multilayer films on silicon and gold surfaces[J]. The Journal of Physical Chemistry, 1988, 92: 2597-2601.
[25] Zhang G J, Ruan Z Ji S. Construction of Metal-Ligand-Coordinated Multilayers and Their Selective Separation Behavior[J]. Langmuir, 2009, 7(26): 4782-4789.
[26] Achilli A, Cath T Y, Childress A E. Selection of inorganic-based draw solutions for forward   osmosis applications[J]. Journal of Membrane Science, 2010, 364(1-2): 233-241.
[27] 闫海红. 聚丙烯腈膜改性及动态LBL组装聚离子膜的研究, 北京工业大学, 2007.
[28] McAloney R A, Goh C M. In situ investigations of polyelectrolyte film formation by second harmonic generation[J]. J Phys Chem, 1999, 103: 10730-10732.
[29] 邓慧宇. 聚电解质层层自组装制备PV, NF膜研究进展[J]. 功能材料, 2007, 8(38): 1217-1220.
[30] 李刚, 李雪梅, 柳越,等. 正渗透原理及浓差极化现象[J]. 化学进展, 2010, 5(22).
[31] Gao M Y, Zhang X, Yang B, et al. Assembly of modified CdS particles/cationic polymer based on electrostatic interactions[J]. Thin Solid Films, 1996, 284-285: 242-245.
[32] 大连理工无机化学教研室. 无机化学. 第5版. 大连理工出版社. 2006: 619.
[33] Xiong H, Cheng M, Zhou Z, et al. A New Approach to the Fabrication of a Self‐Organizing Film of Heterostructured Polymer/Cu2S Nanoparticles, Advanced Materials, 1998, 10(7): 529-532.
[34] Mentbayeva A, Ospanova A, Tashmuhambetova Z, et al. Polymer-Metal Complexes in Polyelectrolyte Multilayer Films as Catalysts for Oxidation of Toluene[J]. Langmuir, 2012, 28(32): 11948-11955.
[35] Lutchmiah K, Verliefde A R D, Roest K, et al. Forward osmosis for application in wastewater treatment: A review[J]. Water Research, 2014, 58: 179-197.
[36] Aydiner C, Topcu S, Tortop C, et al. Interrelated analysis of performance and fouling behaviors in forward osmosis by ex-situ membrane characterizations[J]. Scanning Electron Microscopy, 2012.
[37] 罗勤慧. 配位化学. 北京: 科学出版社. 2012: 207-209.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号