MBfR中疏水性PVDF中空纤维膜表面改性研究
作者:温琦,王暄,吕晓龙,张利娟,武春瑞
单位: 中空纤维膜材料与膜过程省部共建国家重点实验室,生物化工研究所,天津工业大学,天津 300387
关键词: 膜生物膜反应器;疏水膜;界面聚合;氧气传质性能
出版年,卷(期):页码: 2015,35(6):16-21

摘要:
 本文针对膜生物膜反应器(Membrane Biofilm Reactor,MBfR)研究中疏水微孔膜供氧能力不足、耐污染性较差等问题,以壳聚糖(CS)和均苯三甲酰氯(TMC)为水、油两相单体,采用界面聚合法对自制疏水性聚偏氟乙烯(PVDF)中空纤维膜进行表面改性,采用正交实验法针对水相及油相单体浓度、界面聚合时间及热处理温度等参数对改性PVDF复合膜性能的影响进行系统研究,以氧传质性能为评价指标优化表面改性条件。并选取牛血清白蛋白(BSA)、腐殖酸(HA)、海藻酸钠(SA)为典型有机污染物,考察改性PVDF膜的抗污染能力。结果表明,在最佳表面改性条件TMC浓度0.35wt%,CS浓度0.30 wt%,界面聚合时间15min,热处理温度70℃时,改性PVDF膜与原膜具有相似的机械强度,氧气传质性能提高(氧总转移系数为原膜的1.8倍),亲水性增强(接触角自原膜69.8°降至39.9°),并具有优于原膜的抗污染能力。
 
 In order to recoverovercome some disadvantages ofhydrophobic hollow fiber membrane used in the MBfR, such as insufficient oxygen supply capacity and poor antifouling properties,a interfacial polymerization was used to research the surface modification of self-madehydrophobic polyvinylidene fluoride (PVDF) hollow fiber membrane, chitosan(Cs) was selected as the aqueous phase monomer, together with trimesoyl chloride(TMC) as oil phase monomer. Orthogonal experimental method was chosen to study the effects of the monomer concentrations inthe water and oil phases, interfacial polymerization time and heat treatment time on the performance of composite membrane systematically, in which the oxygen mass transfer performance was used as evaluation index and the Bovine serum albumin (BSA), humic acid (HA) and sodium alginate (SA) were used as the typical organic pollutants to investigate the anti-pollution capacity of the membranes.The results show that the modified membrane had a similar mechanical strength compared with the original membrane, when the concentrations of TMC and CS is 0.35 wt% and 0.30 wt% respectively, interfacial polymerizationtime is 15 min and heat treatment temperature is 70℃, the oxygen transfer coefficient of the modified membrane was increased (oxygen transfer coefficient was 1.8 times than the original membrane), the surface hydrophilicity of the modified membrane was improved (contact angle decreased from 69.8° of the original membrane to 39.9°), the pollution resistantanti-foulingabilityof the modified membrane is superior to that of the original membrane.
 
温琦(1988-),女,硕士研究生,疏水性PVDF膜表面改性及MBfR应用研究E-mail:wenqi428@163.com

参考文献:
 [1]Maitin K J, Nerenberg R. The membrane biofilm reactor (MBfR) for water and wastewater treatment: Principles, applications, and recent developments[J].BioresourceTechnology, 2012, 122(3):83-94.
[2]张杨, 李庭刚, 强志民, 等. 膜曝气生物膜反应器研究进展[J]. 环境科学, 2011, 31(6): 1133-1143.
[3]Casey E, Glennon B, Hamer G. Review of membrane aeratedbiofilm reactors[J]. Resources Conservation Recycling, 1999, 27(1-2): 203-215.
[4]Yamagiwa K, Yoshida M. A new oxygen supply method for simultaneousorganic carbon removal and nitrification by a one-stage biofilm process[J].Water Scienceand Technology, 1998, 37(4-5): 117-124.
[5]Pankhania M, Stephenson T, Semmen M J. Hollow fiber bioreactor forwastewater treatment using bubbleless membraneaeration[J]. Water Research, 1994, 28(10): 2233-2236.
[6]Hou F F, Li B A, Xing B H, et al.Surface modification of PVDF hollow fiber membrane and its applicationin membrane aerated biofilm reactor (MABR)[J]. Bioresource Technology, 2013, 140:1-9.
[7]Casey E, Glennon B, Hamer G. Biofilm development in a membrane-aerated biofilm reactor effect of intra-membrane oxygen pressure on performance[J]. Bioprocess Engineering, 2000, 23(10): 457-465.
[8]SomnukB, AmpaiC, Ratana J. Modification of PVDF membrane by chitosan solution for reducingprotein fouling[J]. Journal of Membrane Science, 2009, 342(1-2):97-104.
[9]Reij MW, Keurentjes JTF, Hartmans S. Membrane bioreactors for waste gas treatment[J]. Journal ofBiotechnology, 1998, 59(3):155–167.
[10]Wilderer P A, Brautigam J, Sekoulov I.Application of gas permeablemembranes for auxiliary oxygenation of sequencing batch reactors[J].Conservation Recycling, 1985, 8(1-2): 181-192.
[11]Voss MA, Ahmed T, Semmens MJ. Long-term performance of parallel-flow, bubbleless, hollow-fiber-membrane aerators[J]. Water EnvironmentResearch, 1999, 71(1): 23-30.
[12]Hibiya K, Tsuneda S, Hirata A. Formation and characteristics ofnitrifying biofilm on a membrane modified with positively-chargedpolymer chains[J]. Colloid and Surfaces B: Biointerfaces, 2000, 18(2):105-112.
[13]Terada A, Yamamoto T. Hibiya K, et al. Enhancement of biofilmformation ontosurface-modified hollow-fiber membranes and itsapplication to a membrane-aerated biofilmreactor[J]. BiofilmSystems, 2004, 49(11-12): 263-268.
[14]邢明皓, 宋震宇, 李保安, 等. 界面聚合法制备MABR中空纤维膜[J]. 化学工业与工程, 2013, 30(1): 48-52.
[15]Ahmad A L, B S Ooi.Properties–performance of thin film composites membrane:study on trimesoyl chloride content and polymerization time[J]. Journal of Membrane Science, 2005, 255(3): 67–77.
[16]Yang J M, Su W Y, Leu T L, et al. Evaluation of chitosan/PVA blended hydrogel membranes [J]. Journal of Membrane Science, 2004, 236(1-2):39-51.
[17]环国兰, 张宇峰, 杜启航, 等. 正交试验优化复合纳滤膜复合条件[J]. 膜科学与技术, 2004, 24(5): 77-79.
[18]Ahmed T, Michael J. Use of sealed hollow fibers for bubble less membrane aeration: experimental studies[J].Journal of Membrane Science, 1992, 69(1-2):1-10.
[19]吕晓龙. 中空纤维多孔膜性能评价方法探讨[J].膜科学与技术, 2011, 31(2): 1-6.
[20]刘美, 王湛蓝. 胞外聚合物对膜污染的影响[J].水处理技术, 2007, 33(10): 7-13.
[21]袁金华, 王有乐. 清水充氧实验中饱和溶解氧值确定方法的探讨[J].水资源保护, 2008, 24(2): 79-81.
[22]CharacklisW G, WildererPA. Structure and Functions of Biofilms[M]. New York: Willey J, 1989, 1-387.
[23]Lee S, Elimelech M. Relating organic fouling of reverse osmosis membranes tointermolecular adhesion forces[J]. Environmental Science and Technology, 2006, 40(3): 980-987.
[24]王铎, 娄红瑞, 汪锰. 聚酯酰胺反渗透膜的耐污染性和耐氯性[J].膜科学与技术, 2009, 29(5): 58-61.
[25]Lee S, Ang W S, Elimelech M. Fouling of reverse osmosis membranes byhydrophilic organic matter: implications for water reuse[J]. Desalination, 2006,187(1-3): 313-321.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号