聚合溶胶粒径对铌掺杂的有机无机杂化SiO2膜气体分离性能的影响
作者:林丹丹,宋华庭,朱瓌之,陈加伟,漆虹
单位: 南京工业大学膜科学技术研究所,材料化学工程国家重点实验室,南京 210009
关键词: 铌掺杂有机无机杂化SiO2膜;溶胶-凝胶法;溶胶粒径;气体分离
出版年,卷(期):页码: 2016,36(1):23-29

摘要:
 以1,2-二(三乙氧基硅基)乙烷(BTESE)和五正丁氧基铌为前驱体,采用聚合溶胶路线,制备出三种粒径分布(平均粒径为5 nm,8 nm,11 nm)的铌掺杂的有机无机杂化SiO2(Nb-Hybrid SiO2)聚合溶胶。通过TG/DSC、XRD、CO2吸附和单组分气体渗透实验等手段,详细考察了聚合溶胶粒径对铌掺杂的有机无机杂化SiO2粉体和气体分离膜性能的影响。结果表明:采用平均粒径为5 nm的聚合溶胶,制备得到完整无缺陷的气体分离膜,膜的H2渗透率为8.36×10-8 mol•m-2•s-1•Pa-1,H2/CO2的理想分离因子为23。当采用平均粒径大于8 nm的溶胶制膜时,膜的H2/CO2理想分离因子降低。
 Three Nb-Hybrid SiO2 sols (the average size is 5 nm, 8 nm, 11 nm, respectively) were successfully synthesized via polymeric route with 1, 2-bis(triethoxysilyl) ethane (BTESE) and niobium penta(n)butoxide as precursors. The effect of polymeric sol size on single gas permeability was investigated in detail. The properties of Nb-Hybrid SiO2 powders, as well as Nb-Hybrid SiO2 membranes were characterized by thermogravimetric and differential scanning calorimeter, X-ray diffraction, carbon dioxide adsorption and gas separation test. Results showed that a defect-free Nb-hybrid silica membrane was fabricated by using the sol with an average size of 5 nm. Single hydrogen permeance and H2/CO2 permselectivity of this membrane was 8.36×10-8 mol·m-2·s-1·Pa-1 and 23, respectively. The reduced H2/CO2 permselectivity of NS membranes was observed, which were prepared by using sols with average sizes larger than 8 nm.
作者简介:林丹丹(1990-),女,山东济宁人,硕士研究生,用于气体分离的微孔陶瓷膜的制备及表征.*通讯作者,E-mail: hqi@njtech.edu.cn

参考文献:
[1] Deng X, Wang H, Huang H, Ouyang M. Hydrogen flow chart in China[J]. Int J Hydrogen Energ, 2010, 35(13): 6475-6481.
[2] Pires J C M, Alvim-Ferraz M C M, Martins F G, et al. Carbon 
dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept[J]. Renew Sust Energ Rev, 2012, 16(5): 3043-3053. 
[3] Li B, Duan Y, Luebke D, Morreale B. Advances in CO2 capture technology: A patent review[J]. Appl Energ, 2013, 102: 1439-1447. 
[4] Bert M, Davidson O, de Coninck H, et al. Carbon Dioxide Capture and Storage[M]. New York: United States of America by Cambridge University Press, 2005: 24-25.
[5] Gang L, Masakoto K, Tsuru T. Preparation of organic–inorganic hybrid silica membranes using organoalkoxysilanes: The effect of pendant groups[J]. J Membr Sci, 2011, 379(1-2): 287-295.
[6] Burggraaf A J, Cot L. Fundamentals of inorganic membrane science and technology[M]. Amsterdam: Elsevier, 1996: 227-228.
[7] Ayral A, Julbe A, Rouessac V, et al. Microporous Silica Membrane: Basic Principles and Recent Advances[J]. Membr Sci Technol, 2008, 13: 33-79.
[8] Boffa V. Niobia-silica and silica membranes for gas separation[D]. The Netherlands: University of Twente, 2008, 21-22.
[9] Sah A. Chemically Modified Ceramic Membranes-Study of Structural and Transport Properties[D]. The Netherlands: University of Twente, 2006, 13-14.
[10] Boffa V, Blank D H A, ten Elshof J E. Hydrothermal stability of microporous silica and niobia–silica membranes[J]. J Membr Sci, 2008, 319(1-2): 256-263.
[11] Li Z, Wang Y, Shen J, et al. The measurement system of nanoparticle size distribution from dynamic light scattering data[J]. Opt Laser Eng, 2014, 56: 94-98.
[12] Qureshi H F, Nijmeijer A, Winnubst L. Influence of sol–gel process parameters on the micro-structure and performance of hybrid silica membranes[J]. J Membr Sci, 2013, 446: 19-25.
[13] Boffa V, ten Elshof J E, Garcia R, et al. Microporous niobia–silica membranes: Influence of sol composition and structure on gas transport properties[J]. Micropor Mesopor Mat, 2009, 118(1-3): 202-209.
[14] Xu R, Ibrahim S M, Kanezashi M, et al. New insights into the microstructure-separation properties of organosilica membranes with ethane, ethylene, and acetylene bridges[J]. ACS Appl Mater Inter, 2014, 6(12): 9357-9364.
[15] Qi H, Han J, Xu N P, et al. Hybrid organic-inorganic microporous membranes with high hydrothermal stability for the separation of carbon dioxide[J]. ChemSusChem, 2010, 3(12): 1375-1378.
[16] Qi H, Han J, Xu N P. Effect of calcination temperature on carbon dioxide separation properties of a novel microporous hybrid silica membrane[J]. J Membr Sci, 2011, 382: 231-237.
[17] Qi H, Chen H R, Li L, et al. Effect of Nb content on hydrothermal stability of a novel ethylene-bridged silsesquioxane molecular sieving membrane for H2/CO2 separation[J]. J Membr Sci, 2012, 421-422: 190-200
[18] Qi H. Preparation of Composite Microporous Silica Membranes Using TEOS and 1, 2-Bis(triethoxysilyl)ethane as Precursors for Gas Separation[J]. Chinese J Chem Eng, 2011, 19: 404-409

[19] Braga V S, Dias J A, Dias S C L, et al. Catalyst materials based on Nb2O5 supported on SiO2-Al2O3 preparation and structural characterization[J]. Chem Mater, 2005, 17: 690-695.
[20] Castricum H L, Sah A, Kreiter R, et al. Hybrid ceramic nanosieves: stabilizing nanopores with organic links[J]. Chem Commun (Camb), 2008, (9): 1103-1105.
[21] Castricum H L, Sah A, Kreiter R, B et al. Hydrothermally stable molecular separation membranes from organically linked silica.[J]. J Mater Chem, 2008, 18: 2150-2158.
[22] 漆 虹,韩 静,江晓骆, 等. 有机-无机复合SiO2膜的制备及其水热稳定性能研究[J].无机材料学报, 2010, 25(7): 758-764.
[23] Lin H, Daniels R, Thompson SM, et al. Membrane selective exchange process for dilute methane recovery[J]. J Membr Sci, 2014; 469: 11-18.
[24] Han J, Lee W, Choi J M, Patel R, Min B-R. Characterization of polyethersulfone/polyimide blend membranes prepared by a dry/wet phase inversion: Precipitation kinetics, morphology and gas separation[J]. J Membr Sci, 2010, 351(1-2): 141-148.
[25] 漆 虹,韩 静,江晓骆,等. 微孔SiO2膜在水蒸气条件下的稳定性能[J].(过程工程学报, 2010, 10(1): 161-166
[26] 果世驹.粉末烧结理论[M],北京: 冶金工业出版社, 1998: 14-15.
[27] Gao X, Diniz da Costa J C, Bhatia S K. Adsorption and transport of gases in a supported microporous silica membrane[J]. J Membr Sci, 2014, 460: 46-61.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号