EVOH纳米纤维功能膜的制备及油水分离性能研究
作者:郑晓婷,徐丹丹,陆建伟,沈青,肖茹
单位: 东华大学材料科学与工程学院,上海 201620
关键词: 乙烯-乙烯醇共聚物(EVOH);纳米纤维膜;孔径分布;过滤性能
出版年,卷(期):页码: 2016,36(2):20-27

摘要:
 利用多组分不相容体系熔融共混挤出法制备乙烯-乙烯醇共聚物(EVOH)纳米纤维,以PET无纺布为基材,经分散-成膜过程制备EVOH纳米纤维膜,并在其上沉积纳米纤维素晶(NCC)制备EVOH纳米纤维复合膜,研究EVOH纳米纤维膜及其复合膜结构性能和油水分离特性。结果表明,随着单位面积纳米纤维质量增加,EVOH纳米纤维膜孔隙率先增加后趋于稳定,孔径和接触角呈减小趋势,水通量均高于商业微孔滤膜。此外,在EVOH纳米纤维膜表面沉积NCC可明显改善膜亲水性,所制备复合膜对油水乳液截留率可达98.5%,且其通量较未修饰的EVOH纳米纤维膜和商业微孔滤膜稳定,在水过滤领域具有潜在应用前景。
 The thermoplastic polymer nanofibers was obtained through the phase separation during extrusion melt blending, in which the dispersed phase was stretched into nanofibers after the matrix phase removed. Dispersion and deposition method were used to prepare the nanofiber based composite membrane. This kind of nanofiber membrane has the advantage of high filtration efficiency, hydrophilic, resistant to pollution for water filtration. In this paper, EVOH nanofiber membrane was firstly prepared by depositing EVOH nanofiber suspension on the PETnon-woven fabric, which was then modified by Nanocellulose crystal (NCC) to gain the composite membrane with NCCbarrier layer, EVOH intermediate layer and PET support layer. We studied the impact of nanofiberquality of unit areaonthe morphology, porosity, pore size and distribution, contact angle and water flux of EVOH nanofiber membranes. Self-made oil-water emulsion was used to evaluatethe filtration performance of EVOH nanofibercomposite membrane. The results show thatwith the increasing of nanofiberquality, the EVOH nanofiber membranes showed an increase in the porosity and a decrease in pore size and contact angle, and expressed higher water flux than the commercial micro-filtrationmembrane. It is demonstrated that EVOH nanofibercompositemembraneexhibited a higher rejection rate and stabilityof filtration flux thanunmodifiedEVOHnanofiber membrane and the commercial micro-filtration membrane for the filtration of oil and water emulsion.
郑晓婷(1991-),女,江苏省盐城市人,硕士生,从事热塑性高聚物纳米纤维膜的研究及应用,E-mail:zxt4929@163.com. *通讯作者,E-mail: xiaoru@dhu.edu.cn.

参考文献:
 [1] 蔡巧云, 王磊, 苗瑞, 等. PVDF/EVOH共混膜制备及其抗污染特性的分析 [J]. 膜科学与技术, 2015, 35(1): 28-34.
[2] Li M, Wang D, Xiao R, et al. A novel high flux poly(trimethylene terephthalate) nanofiber membrane for microfiltration media [J]. Separation & Purification Technology, 2013, 116(37): 199-205.
[3] Zhao Z, Zheng J, Wang M, et al. High performance ultrafiltration membrane based on modified chitosan coating and electrospun nanofibrous PVDF scaffolds [J]. Journal of Membrane Science, 2012, 394(1): 209–17.
[4] Yoon K, Hsiao B S, Chu B. High flux ultrafiltration nanofibrous membranes based on polyacrylonitrile electrospun scaffolds and crosslinked polyvinyl alcohol coating [J]. Journal of Membrane Science, 2009, 338(1): 145–52.
[5] 赵晓燕, 赵晓画, 王铭, 等. 静电纺复合膜的制备及其应用 [J]. 高分子通报, 2013, (12): 44-51.
[6] Wang C, Yang F, Meng F, et al. High flux and antifouling filtration membrane based on non-woven fabric with chitosan coating for membrane bioreactors[J]. Bioresource Technology, 2010, 101(14):5469–5474.
[7] Ma H, Burger C, Hsiao B S, et al. Ultra-fine cellulose nanofibers: new nano-scale materials for water purification [J]. Jmaterchem, 2011, 21(21): 7507-10.
[8] Liu P, Ouyang Y, Xiao R. Fabrication and morphology development of isotactic polypropylene nanofibers from isotactic polypropylene/polylactide blends [J]. Journal of Applied Polymer Science, 2012, 123(5): 2859–66.
[9] Wang H, Xiao R. Preparation and characterization of CNTs/PE micro-nanofibers [J]. Polymers for Advanced Technologies, 2012, 23(3): 508–15.
[10] Zhu M, Xu G, Yu M, et al. Preparation, properties, and application of polypropylene micro/nanofiber membranes [J]. Polymers for Advanced Technologies, 2012, 23(2): 247–54.
[11] Li M, Xiao R, Sun G. Formation and morphology development of poly(butylene terephthalate) nanofibers from poly(butylene terephthalate)/cellulose acetate butyrate immiscible blends [J]. Polymer Engineering & Science, 2011, 51(5): 835–42.
[12] Zhang P P, Zhu K Y, Su L Q, et al. Preparation and Properties of Graphene/Polyamide 6 Composites by Melt Compounding [J]. Advanced Materials Research, 2013, 621.
[13] Li M F, Xiao R, Sun G. Morphology development and size control of poly(trimethylene terephthalate) nanofibers prepared from poly(trimethylene terephthalate)/cellulose acetate butyrate in situ fibrillar composites [J]. Journal of Materials Science, 2011, 46(13): 4524-31.
[14] Ma Z, Masaya K, Ramakrishna S. Immobilization Of Cibacron Blue F3ga On Electrospun Polysulphone Ultra-Fine Fiber Surfaces Towards Developing An Affinity Membrane For Albumin Adsorption [J]. Journal of Membrane Science, 2006, 282: 237–44.
[15] Veleirinho B, Rei M F, Lopes, et al. Solvent and concentration effects on the properties of electrospun poly(ethylene terephthalate) nanofiber mats [J]. Journal of Polymer Science Part B Polymer Physics, 2008, 46(5): 460–71.
[16] Li Q, Wei Q, Wu N, et al. Structural characterization and dynamic water adsorption of electrospun polyamide6/montmorillonite nanofibers [J]. Journal of Applied Polymer Science, 2008, 107(6): 3535–40.
[17] Monash P, Majhi A, Pugazhenthi G. Separation of bovine serum albumin (BSA) using γ-Al 2 O 3 -clay composite ultrafiltration membrane [J]. Journal of Chemical Technology & Biotechnology, 2010, volume 85(4): 545-54.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号