氯化聚氯乙烯膜微观结构及其性能影响因素的研究
作者:吕晓宁,陈云逸,王军,顾倩倩,刘倩文
单位: 东华大学环境科学与工程学院,国家环境保护纺织污染防治工程技术中心,上海 201620
关键词: 氯化聚氯乙烯;微观结构;膜性能;铸膜工艺条件
出版年,卷(期):页码: 2016,36(3):54-61

摘要:
 文章采用溶剂-非溶剂扩散诱导相分离的方法制备了氯化聚氯乙烯(CPVC)膜,考察了铸膜液的聚合物含量与温度、凝胶浴温度与凝胶浴中溶剂含量对CPVC膜微观结构及其性能影响。结果表明,铸膜液的聚合物含量与温度、凝胶浴中溶剂质量百分含量在60%以下及凝胶浴温度为20°C以下时,CPVC膜的微观结构没有发生太大的变化,膜的断面均为致密皮层、指状孔及大孔支撑层构成的非对称膜;凝胶浴中溶剂含量达到80%及凝胶浴温度在30°C以上时,CPVC膜的微观结构发生质的变化,膜断面变为多孔皮层和海绵状结构构成的非对称膜,同时发现膜的微观结构对凝胶浴温度变化较敏感,表明可以通过改变凝胶浴温度对膜的微观结构进行有效的调控。在所研究范围内,CPVC膜对牛血清蛋白(BSA)的截留率在87%以上,即膜的平均孔径在10 nm以下,水通量最小111 L/(m2•h),最大达到1297 L/(m2•h),通过与文献比较,CPVC膜的过滤性能及机械性能均远远优于聚氯乙烯(PVC)膜。
 In this paper, chlorinated polyvinyl chloride (CPVC) membrane was prepared by the phase inversion method, then studied and discussed the influence of membrane processing conditions (polymer content of the casting solution, the casting solution temperature, the gel bath composition and the the gel bath temperature) on microstructure and performance of CPVC membrane. It was found that polymer concentration and casting solution temperature didn't show obvious infection on the microstructure and performance of CPVC membrane.And the CPVC membrane, which had dense layer surface and macroporous support layer in the cross-section and nonporous surface, was asymmetric in the research area. In addition, the performance of CPVC membrane reached a maximum at 18 wt% polymer concentration and 70°C of the casting solution temperature. The gel bath composition played an important role in the influence of the microstructure and performance of CPVC membranes. The membrane was asymmetric, which had dense skin, sponge-like structures and nonporous surface, when the solvent content in the gel bath was lower than 60%. When the solvent concentration reached 80%, the membrane, which had skin and large conical macroporous support in the cross-section and small holes in the membrane surface, was asymmetric. The temperature of the gel bath showed obvious infection on the microstructure. When the gel bath temperature was 30°C, large conical macroporous membrane structure was changed into sponge-like structure. In addition, with increasing temperature of gel bath, the skin and sponge-like structures were denser, the water flux of CPVC membrane was lowered, and retention rate of membrane was improved. It was found that the retention rate was always above 87%, namely the average pore diameter of CPVC was lower than 10 nm, and the minimum water flux was 111 L•m-2•h-1 in the research area, while the maximum water flux was 1297 L•m-2•h-1. The results showed that the properties of CPVC membrane were much better than PVC membrane.
第一作者简介:吕晓宁(1989-),女,河北石家庄人,硕士研究生,研究方向为膜分离技术,E-mail:lvxiaoning.com@163.com 联系作者: E-mail:wangj@dhu.edu.cn

参考文献:
 [1] 严海标,王茂坤,胡圣飞.CPVC/PVC/CPE三元共混改性的应用[J].现代塑料加工应用,1999,11(2):17-19.
[2] 许桂连.氯化聚氯乙烯(CPVC)结构与性能的关系研究[D].北京:北京化工大学,2006: 4-14.
[3] 朱德钦,生瑜.兰明荣.PVC/CPVC复合材料的力学与耐热性能研究[J].聚氯乙烯,2005,03: 19-20+40.
[4] 刘家桢,苏延磊.聚氯乙烯/氯化聚氯乙烯多孔膜的制备及改性研究[D].天津:天津大学,2013:20-44.
[5] Kang S., Lee Y. M.. The Influence of membrane surface properties on fouling in a membrane bioreactor for wastewater treatment [J]. Separ Sci Technol,2005,39(4):833-854.
[6] Liu J Z, Su Y L, Peng J M, et al. Preparation and performance of antifouling PVC/CPVC blend ultrafiltration  membranes[J]. Ind Eng Chem Res, 2012, 51(24):8308-8314.
[7] 周红中,吴俊,王军.制膜工艺条件对PVC/SPES共混膜性能的影响[J],膜科学与技术,2015,35(3):21-30.
[8] 左丹英.溶液相转化法制备PVDF微孔膜过程中的结构控制及其性能研究[D].浙江大学博士论文,2005年.
[9] Li S,Heijman SGJ, van Dijk JC. Application of backwashing with demineralized water for UF fouling control in UF-RO desalination[J]. Water Sci Technol,2011,11(3):364-369.
[10] 张力平,陈国伟,唐焕威.纤维素微纳晶体制备复合超滤膜材料的研究[J].北京林业大学学报,2008,30(4):1-6.
[11] 赵后昌,皇甫风云,白云东,等.PSF/PES共混超滤膜的性能研究[J].化工新型材料,2010,38(5):97-99.
[12] Huang Z Q,Chen Z Y,Guo X P,et al.Structures and separation properties of PAN-Fe3O4 ultrafiltration membranes prepared under an orthogonal magnetic field[J]. Ind Eng Chem Res,2006,45(23):7905-7912.
[13] Huang B N,Wang J N,Li C J, Preparation and properties of electrospun fibrous membrance with adjustable mechanical properties and wetting behavior[J]. Acta Polym Sin,2012,9:929-936.
[14] 王军,奚旦立,徐大同,等.聚氯乙烯中空纤维膜的研制[J].膜科学与技术,2002,22(4):7-12.
[15] 张结来. 聚偏氟乙烯熔体的流变特性[J].高分子材料科学与工程,2006,22(2):123-129.
[16] 俞三传, 高从堦.进入沉淀相转化法制膜[J].膜科学与技术,2000,20(5):36-41.
[17] Marcel Mulder. Basic Principles of Membrane Technology[M].李琳,译.北京:清华大学出版社,1999.106-124.
[18] 叶茜,许美兰,廖文超,等.凝胶浴组成对聚偏氟乙烯结构性能的影响[J].厦门理工学院学报,2012,20(4):74-78.
[19] Sun Yongli, Sun Minhua, Cheng Weidong, et al. The Examination of Water Potentials by Simulating Viscosity[J]. Comput Mater Sci, 2007, 38(4): 737-740.
[20] 夏清,贾绍义.化工原理 [M].天津:天津大学出版社,2011.95-100+338-339.
[21] 吴俊,王军,蒋淑红,等.PVC-SPES共混膜的制备及其在废水处理中的应用研究[J].水处理技术,2014,40(12):29-34.
[22] 赵梓年,许昆鹏,文志红. PU/PVC共混超滤膜的制备及性能[J]. 塑料科技,2005,06:23-26 
[23] Jiang S H,Wang J,Chen Y C. Poly(vinyl chloride) and poly(ether sulfone)- g-poly(ether glycol) methyl ether methacrylate blend membranes with improved ultrafiltration performance and fouling resistance[J]. J Appl Polym Sci,2015,132(21):41726.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号