水中Fe3+与蛋白质共存时的膜污染机理研究
作者:吴颜,王磊,黄丹曦,王旭东,吕永涛, 黄松, 贾世发
单位: 西安建筑科技大学环境与市政工程学院,陕西 西安,710055
关键词: 超滤膜;铁离子;牛血清蛋白(BSA);膜污染;AFM
出版年,卷(期):页码: 2016,36(4):38-45

摘要:
 本文利用BSA与FeCl3等配制的混合溶液模拟污水进行膜过滤实验,研究超滤膜中金属离子铁(Fe3+)与蛋白质(BSA)共存时对膜污染的影响。研究发现,在pH为3时,向BSA混合溶液中添加Fe3+会在一定程度上影响其对膜的污染程度。BSA与Fe3+之间存在静电相互作用从而形成胶体态物质是其产生影响的原因之一,在相同BSA浓度下,随着FeCl3浓度的增加,当FeCl3浓度达到20 mg/l时,膜污染最为严重.而在相同BSA与FeCl3浓度条件下,随着pH值的增加,当pH为7时,膜污染最为严重,这是由于此时BSA带负电,被带正电的铁离子沉淀层所吸附,在膜表面形成BSA/铁的聚合物。
 In this work, we studied the effects of the coexisting metal ions of iron and protein fouling of ultrafiltration membranes, using BSA with a mixed solution of FeCl3 as simulated wastewater. The results show that the addition of Fe3+ into the BSA solution would cause more severe fouling at pH 3. And, at the same BSA concentration, the membrane exhibited a most sharply flux decline with 20 mg/l FeCl3 .However, membrane fouling behavior became more severely with pH increasing, the flux decline of the membrane was highest at pH 7.Because the BSA was adsorbed by the positively charged iron precipitate layer,which can easily interacted with Fe3+ and ferric compounds. Therefore, BSA/iron can more easily deposited onto the surface of the membrane.
第一作者简介:吴颜(1990.06-),女,河北承德,主要从事超滤膜水处理技术研究,*通讯联系人,王磊,wl0178@126.com.

参考文献:
 [1] Abdessemed D., Nezzal G. Treatment of primary effluent by coagulation-adsorption-ul trafiltration for reuse [J]. Desalination, 2003, 152(1–3): 367-373.
[2] Abdessemed D., Nezzal G., Ben Aim R. Coagulation—adsorption—ultrafiltration for wastewater treatment and reuse [J]. Desalination, 2000, 131(1–3): 307-314.
[3] Delgado Diaz Sebastián, Vera Peña Luisa, González Cabrera Enrique, etc. Effect of previous coagulation in direct ultrafiltration of primary settled municipal wastewater [J]. Desalination, 2012, 304(0): 41-48.
[4] Xiangli Qiao, Zhenjia Zhang, Nongcun Wang, etc. Coagulation pretreatment for a large-scale ultrafiltration process treating water from the taihu river [J]. Desalination, 2008, 230(1–3): 305-313.
[5] Oshima K. H., Evans-Strickfaden T. T., Highsmith A. K., etc. The use of a microporous polyvinylidene fluoride (pvdf) membrane filter to separate contaminating viral particles from biologically important proteins [J]. Biologicals, 1996, 24(2): 137-145.
[6] Peter John, Degen. Polyvinylidene fluoride membrane and method for removing viruses from solution. 1998, USP.
[7] Yang ZY. Use of membrane in wastewater treatment in china. Experiments with hollow fiber membranes in a bioreactor [J]. Stuttg Ber Siedlungs Wasser Wirtsch, 1997, 145: 75-86.
[8] Degen, Peter John. Poly (vinylidene fluoride) membranes [J]. DE,P, 4445973., 1995.06.29.
[9] Wintgens T., Melin T., Schäfer A., etc. The role of membrane processes in municipal wastewater reclamation and reuse [J]. Desalination, 2005, 178(1–3): 1-11.
[10] Jarusutthirak Chalor, Amy Gary, Croué Jean-Philippe. Fouling characteristics of wastewater effluent organic matter (efom) isolates on nf and uf membranes [J]. Desalination, 2002, 145(1–3): 247-255.
[11] Le-Clech Pierre, Chen Vicki, Fane Tony A. G. Fouling in membrane bioreactors used in wastewater treatment [J]. Journal of Membrane Science, 2006, 284(1–2): 17-53.
[12] Chan R., Chen V. Characterization of protein fouling on membranes: Opportunities and challenges [J]. Journal of Membrane Science, 2004, 242(1–2): 169-188.
[13] Maruyama Tatsuo, Katoh Shinji, Nakajima Mitsutoshi, etc. Ft-ir analysis of bsa fouled on ultrafiltration and microfiltration membranes [J]. Journal of Membrane Science, 2001, 192(1–2): 201-207.
[14] Marshall A. D., Munro P. A., Trägårdh G. The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity: A literature review [J]. Desalination, 1993, 91(1): 65-108.
[15] Herrero C., Prádanos P., Calvo J. I., etc. Flux decline in protein microfiltration: Influence of operative parameters [J]. Journal of Colloid and Interface Science, 1997, 187(2): 344-351.
[16] Nakamura Kazuho, Matsumoto Kanji. Adsorption behavior of bsa in microfiltration with porous glass membrane [J]. Journal of Membrane Science, 1998, 145(1): 119-128.
[17] Ricq Laurence, Pierre André, Reggiani Jean-Claude, etc. Effects of proteins on electrokinetic properties of inorganic membranes during ultra- and micro-filtration [J]. Journal of Membrane Science, 1996, 114(1): 27-38.
[18] Su T. J., Lu J. R., Cui Z. F., etc. Fouling of ceramic membranes by albumins under dynamic filtration conditions [J]. Journal of Membrane Science, 2000, 173(2): 167-178.
[19] Long Xiufen, Zhang Caihua, Cheng Jiongjia, etc. A novel method for study of the aggregation of protein induced by metal ion aluminum(iii) using resonance rayleigh scattering technique [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2008, 69(1): 71-77.
[20] van den Berg G. B., Smolders C. A. Concentration polarization phenomena during dead-end ultrafiltration of protein mixtures. The influence of solute-solute interactions [J]. Journal of Membrane Science, 1989, 47(1): 1-24.
[21] Ma Baiwen, Yu Wenzheng, Liu Huijuan, etc. Effect of iron/aluminum hydrolyzed precipitate layer on ultrafiltration membrane [J]. Desalination, 2013, 330(0): 16-21.
[22] Hao Yan, Moriya Akihito, Ohmukai Yoshikage, etc. Effect of metal ions on the protein fouling of hollow-fiber ultrafiltration membranes [J]. Separation and Purification Technology, 2013, 111: 137-144.
[23] Basri H., Ismail A. F., Aziz M. Microstructure and anti-adhesion properties of pes/tap/ag hybrid ultrafiltration membrane [J]. Desalination, 2012, 287(0): 71-77.
[24] Wang Lei, Miao Rui, Wang Xudong, etc. Fouling behavior of typical organic foulants in polyvinylidene fluoride ultrafiltration membranes: Characterization from microforces [J]. Environmental science & technology, 2013, 47(8): 3708-3714.
[25] Lee Sangyoup, Elimelech Menachem. Relating organic fouling of reverse osmosis membranes to intermolecular adhesion forces [J]. Environmental science & technology, 2006, 40(3): 980-987.
[26] Pieracci John, Crivello James V., Belfort Georges. Photochemical modification of 10 kda polyethersulfone ultrafiltration membran- es for reduction of biofouling [J]. Journal of Membrane Science, 1999, 156(2): 223-240.
[27] Yang Qinqin, Liang Jiangong, Han Heyou. Probing the interaction of magnetic iron oxide nanoparticles with bovine serum albumin by spectroscopic techniques [J]. The Journal of Physical Chemistry B, 2009, 113(30): 10454-10458.
[28] Yushmanov Victor E., Tominaga Tania T., Borissevitch Iouri E., etc. Binding of manganese and iron tetraphenylporphine sulfonates to albumin is relevant to their contrast properties [J]. Magnetic Resonance Imaging, 1996, 14(3): 255-261.
[29] Mizuno Chikaaki, Bao Shanhu, Hinoue Teruo, etc. Adsorption behavior of metal ions onto a bovine serum albumin (bsa) membrane monitored by means of an electrode-separated piezoelectric quartz crystal [J]. Analytical sciences, 2005, 21(3): 281-286.
[30] Zhang Yi, Wilcox Dean E. Thermodynamic and spectroscopic study of cu (ii) and ni (ii) binding to bovine serum albumin [J]. JBIC Journal of Biological Inorganic Chemistry, 2002, 7(3): 327-337.
[31] Ricq Laurence, Narçon Sandrine, Reggiani Jean-Claude, etc. Streaming potential and protein transmission ultrafiltration of single proteins and proteins in mixture: Β-lactoglobulin and lysozyme [J]. Journal of Membrane Science, 1999, 156(1): 81-96.
[32] Palacio L., Ho C. C., Prádanos P., etc. Fouling with protein mixtures in microfiltration: Bsa–lysozyme and bsa–pepsin [J]. Journal of Membrane Science, 2003, 222(1–2): 41-51.
[33]   Güell C., Czekaj P., Davis R. H. Microfiltrati- on of protein mixtures and the effects of yeast on membrane fouling [J]. Journal of Membrane Science, 1999, 155(1): 113-122.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号