纳滤膜三元共聚物涂层的构建及其渗透分离性能
作者:孙健,邓优,张培斌,朱利平,朱宝库a
单位: 浙江大学高分子科学与工程学系,高分子合成与功能构造教育部重点实验室,杭州,310027
关键词: 纳滤膜;三元共聚物;表面涂层;渗透分离
出版年,卷(期):页码: 2016,36(4):60-66

摘要:
 通过分子设计,采用自由基聚合方法合成了2-丙烯酰胺-2-甲基丙磺酸(AMPS)、丙烯酰胺(Am)和N-乙烯基咪唑(VI)三种单体的共聚物P(AMPS-Am-VI),用于纳滤膜的表面涂覆改性,在膜表面引入亲水性三元共聚物涂层。对表面涂覆改性后纳滤膜的表面形貌、化学组成、亲/疏水性和荷电特征进行了详细的测试与表征,考察了表面涂覆改性条件对纳滤膜表面微结构和渗透分离性能的影响。研究结果表明,三元共聚物涂层的引入降低了膜表面粗糙度,提高了膜表面亲水性,并使膜表面更趋向于电中性,而纳滤膜的渗透和分离性能没有明显变化。动态抗污实验结果表明,三元共聚物涂层显著提高了纳滤膜的抗污染能力,物理清洗后通量恢复率可达87.6%。
 A random terpolymerP(AMPS-Am-VI)was designed and synthesized via free radical polymerization of 2-acrylamido-2-methyl propanesulfonic acid, acrylamide, and N-vinylimidazole.The terpolymer was incorporated onto commercial TFCnanofiltration (NF) membranes by a simple dip-coating process to create a hydrophilic and antifouling layer.The changes in surface chemistry, morphology, hydrophilicity, and charge characteristics of the membrane after surface coating were characterized in detail. The effects of the coating conditions on membrane surface morphology and permeation/separationcharacteristics wereinvestigated anddiscussed. It was shown that the incorporation of terpolymer coating created a more hydrophilic, smooth, and neutral membrane surface without compromising the permeation/separation properties. The BSA filtration tests demonstrated that the antifouling ability of the modified membranes was improved significantly, with the flux recovery ratio being as high as 87.6%.

参考文献:
 [1] Bruggen BVander,Manttari M,Nystrom M. Drawbacks of applyingnano?ltration and how  to avoid them: a review. [J]. Sep PurifTechnol, 2008, 63: 251–263
[2] Wang XL, Shang WJ, Wang DX, et al.Characterization andapplications of nano?ltration membranes: state of the art.[J]. Desalination, 2009, 236: 316–326
[3] Hilal N, Al-Zoubi H,Darwish NA, et al.A comprehensive review of nano?ltration membranes: treatment, pretreatment,modelling,andatomicforcemicroscopy. [J]. Desalination, 2004, 170: 281–308
[4] Bruggen BVan der, Vandecasteele C. Removal of pollutants from surfacewater and groundwater by nano?ltration: overview of possible applicationsin the drinking water industry.[J]. EnvironPollut, 2003, 122: 435–445
[5] Rana D, Matsuura T.Surface Modi?cations for Antifouling Membranes. [J]. ChemRev, 2010, 110: 2448–2471
[6] Rana D,Kim Y, Matsuura T, et al.Development of antifouling thin-?lm-composite membranesfor seawater desalination. [J]. JMembrSci, 2011, 367: 110–118
[7] Liu M H, Chen Q, Wang L Z, et al.Improving fouling resistance and chlorine stability of aromatic polyamidethin-?lm composite RO membrane by surface grafting of polyvinylalcohol (PVA). [J].Desalination, 2015, 367: 11–20
[8] Mi Y F, Zhao Q, Ji Y L, et al.A novel route for surface zwitterionic functionalization of polyamidenano?ltration membranes with improved performance. [J].JMembrSci,2015, 490: 311–320
[9] Kasemset S, Lee A, Miller DJ, et al. Effect of polydopamine deposition conditions on fouling resistance,physical properties, and permeation properties of reverse osmosismembranes in oil/water separation. [J]. JMembrSci, 2013, 425-426: 208–216
[10] Seidel A,Waypa JJ,Elimelech M. Role of charge (Donnan) exclusion inremoval of arsenic from water by a negatively charged porous nano?ltrationmembrane. [J]. EnvironEngSci, 200418: 105–113
[11] Huisman IH, Pra´danos P, Herna´ndez A, The effect of protein–protein andprotein-membrane interactionson membrane fouling in ultra?ltration. [J]. JMembrSci, 2000, 179: 79–90
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号