错流工况滤饼质量影响因素的熵权法分析
作者:王浩1 王湛1 马禹2 崔彦杰1 储金树1
单位: 1.北京工业大学环境与能源工程学院,化学化工系,绿色催化与分离北京市 重点实验室,北京 100022;2.新疆自治区气候中心,乌鲁木齐,830002
关键词: 酵母悬浮液;微滤膜;过滤;操作条件;熵权
出版年,卷(期):页码: 2016,36(4):91-96

摘要:
 选用孔径为0.1 μm 聚偏氟乙烯(PVDF)微滤膜对酵母悬浮液进行了错流过滤实验.研究了微滤膜上酵母滤饼质量随操作条件的变化规律性并采用熵权法分析了各操作条件对微滤膜上酵母滤饼质量的定量贡献.研究结果表明:微滤膜上酵母的滤饼质量在错流过滤过程中随压力、浓度的增加而增加,但随错流速率的增加而减小,而温度对滤饼质量的影响在1. 0 g/L~3.0 g/L浓度范围内是随着温度的上升而增加,在4. 0 g/L~5.0 g/L浓度范围内随着温度的升高而减少;膜通量随着温度、压力、错流速率的增加而增加,但是随着酵母悬浮液浓度的增加而减少。操作条件对滤饼质量影响程度的顺序为:压力(0.4755) > 浓度(0.2376) > 温度(0.2054) > 错流速率(0.0814).
 The crossflow microfiltration experiment of yeast suspensions was performed by polyvinylidene fluoride (PVDF) membrane with 0.1μm average pore size in crossflow microfiltration. The change of the mass of cake layer deposition and permeation flux with operating conditions was studied. A entropy method was used to study the contribution of different operation conditions on the mass of cake layer deposition of yeast suspensions.The result showed that the mass of cake layer deposition increased with the increasing of feed concentration and operation pressure and decreased with the increase of crossflow velocity. It's worth noting that the mass of cake layer deposition increased with the increase of the operation temperature in the range of feed concentration 1.0~3.0g/L and then decreased in the range of feed concentration 4.0~5.0g/L. Operating temperature,pressure and crossflow velocity have a positive contribution to permeate flux.But the feed concentration has a negative contribution to permeate flow.The sequence and influence degrees of operation conditions on the mass of cake layer deposition were transmembrane pressure (0.4755) > concentration (0.2376) > temperature (0.2054) > crossflow velocity (0.0814).
第一作者简介:王浩(1992-),男,河北邢台市人,硕士生,从事膜污染及其控制技术研究,Email:perfectwanghao@emails.bjut.edu.cn.*通讯作者:Email: wangzh@bjut.edu.cn.

参考文献:
 [1] Li Qilin,Elimelech M.Organic Fouling and Chemical Cleaning of Nanofiltration Membranes: Measurements and Mechanisms[J].Environ Sci Technol,2004,38:4683-4693.
[2] McCarthy A A,Walsh P K,Foley G.Experimental techniques for quantifying the cake mass,the cake and membrane resistances and the specific cake resistance during crossflow filtration of microbial suspensions[J].J Membr Sci,2002,201:31–45.
[3] Keskinler B,Yildiz E,ErhanE,et al.Crossflow microfiltration of low concentration-nonliving yeast suspensions[J].J Membr Sci,2004,233:59–69.
[4] 董秉直,夏丽华,陈艳,等.pH对超滤膜的过滤性能的影响[J].膜科学与技术,2006,26(2): 41-44.
[5] Wang Zhan,Chu Jinshu,Song Yin,et al.Influence of operating conditions on the efficiency of domestic wastewater treatment in membrane bioreactors[J].Desalination,2009,245: 73–81.
[6] Wang Zhan,Chu Jinshu,Zhang Xinmiao.Study of a cake model during stirred dead-end microfiltration[J].Desalination,2007,217:127–138.
[7] Wang Zhan,Zhao Shanshan,Liu Feng,et al. Influence of operating conditions on cleaning efficiency in sequencing batch reactor (SBR) activated sludge process — water rinsing introduced membrane filtration process[J].Desalination,2010,259:235-242.
[8] Wang Zhan,Cui Yanjie,Yao Jinmiao,et al.The influence of various operating conditions on specific cake resistance in the crossflow microfiltration of yeast suspensions[J].Desalin Water Treat,2009,1:237-247.
[9] Lee S,Ryu H J,Won J S,et al.Determination and application of the weights for landslide susceptibility mapping using an artificial neural network[J].Eng Geol,2004,71:289-302.
[10] 罗军刚,解建仓,阮本清.基于熵权的水资源短缺风险模糊综合评价模型及应用[J].水利学报,2008,39(9):1092-1097.
[11] Liu Peide,Zhang Xin.Research on the supplier selection of a supply chain based on entropy weight and improved ELECTRE-III method[J].Int J Prod Res,2011,49(3):637-646.
[12] Zhou Rongxi,Cai Ru,Tong Guanqun.Applications of entropy in finance: a review[J].Entropy,2013,15:4909-4931.
[13] Liu Li,Zhou Jianzhong,An Xueli,et al.Using fuzzy theory and information entropy for water quality assessment in Three Gorges region,China[J].Expert Syst Appl,2010,37:2517-2521.
[14] Zou Zhihong,Yun Yi,Sun Jingnan.Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment[J].J Environ Sci,2006,18(5):1020-1023.
[15] Song L.Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling[J].J Membr Sci,1998,139:183-200.
[16] Song L.A New Model for the Calculation of the Limiting Flux in Ultrafiltration[J].J Membr Sci,1998,144:173-185.
[17] Jiao D,Sharma M M.Mechanism of cake buildup in crossflow filtration of colloidal suspensions [J].J Colloid Interface Sci,1994,162(2):454-462.
[18] Seidel A, Elimelech M.Coupling between chemical and physical interactions in natural organic matter (NOM) fouling of nanofiltration membranes:implications for fouling control[J].J Membr Sci,2002,203:245-255.
[19] Zydney A L,Colton C K.A concentration polarization model for the filtrate flux in cross-flow microfiltration of particulate suspensions[J].Chem Eng Commun,1986,47:1-3.
[20] 付高辉,张雪梅,张卫江,等.动态微孔膜过滤特性研究[J].化学工程,2005,33(3):40-42.
[21] Foley G,MacLoughlin P F,Malone D M.Preferential deposition of smaller cells during crossflow microfiltration of a yeast suspension,Biotechnol Tech,1992,6(2):115–120.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号