杂化聚酰亚胺膜对CO2/N2气体渗透性能的模拟
作者:朱娜娜,高会元?
单位: 华北理工大学化学工程学院,河北唐山 063009
关键词: 分子模拟;杂化膜;聚酰亚胺;气体渗透性能;CO2/N2
分类号: TQ028.8
出版年,卷(期):页码: 2016,36(6):47-52

摘要:
 以PMDA-ODA型聚酰亚胺为基本模拟单元,纳米SiO2颗粒为掺杂剂,采用COMPASS力场为势能模型,运用分子力学、分子动力学以及巨正则蒙特卡洛方法对杂化聚酰亚胺膜(PI)的气体渗透性能进行了模拟研究。构建了含20个单体的等规立构高分子链,经一系列优化处理过程,获取了与实验数据相近的聚合物高分子链结构模型。分子动力学计算获取了CO2与N2在PI聚合物中的溶解系数、扩散系数与渗透系数,通过模型中X射线衍射光谱(XRD)确定了体系的真实性,研究发现分子与SiO2之间的氢键使纳米颗粒在聚合物基体中能够稳定存在,自由体积等参数的计算表明纳米SiO2的加入提高了膜对CO2的渗透分离性能。
 Using the molecular mechanics, molecular dynamics and the grand canonical Monte Carlo method, the gas permeation properties of Hybrid Polyimide membranes (PI) were studied by using the PMDA-ODA as the basic simulation unit, the nano-particles SiO2 as the dopant and the COMPASS force field as the potential energy model. In order to construct a polymer chain with 20 monomers, a polymer chain structure model with similar experimental data is obtained by a series of optimization process. The solubility coefficient, diffusion coefficient and permeability coefficient of CO2 and N2 in PI polymer were obtained by molecular dynamics calculation, and the X-ray diffraction (XRD) was used to determine the true structure of the polymer, and the hydrogen bonds between the molecules and SiO2 in the polymer matrix were able to stabilize the particles, and the calculation of free volume and other parameters, the permeability and separation performance of PI membranes doped with SiO2 particles is better than that of pure PI membrane for CO2.

基金项目:
项目基金:河北省自然科学基金资助项目(B2014209258)。

作者简介:
作者简介:朱娜娜(1991-),女,河北邢台人,华北理工大学硕士生,研究方向为膜制备与模拟研究,

参考文献:
[1]. Komarov P V, Chiu Y T, Chen S M, et al. Investigation of Thermal Expansion of Polyimide/SiO2 Nanocomposites by Molecular Dynamics Simulations [J]. Macromolecular Theory & Simulations, 2010, 19(1):64–73. 
[2]. Yin Y, Lamm M H. Molecular dynamics simulation of mixed matrix nanocomposites containing polyimide and polyhedral oligomeric silsesquioxane (POSS)[J]. Polymer, 2009, 50(5):1324-1332. 
[3]. Reinhold J, Veltzke T, Wells B, et al. Molecular dynamics simulations on scattering of single Ar, N2, and CO2 molecules on realistic surfaces[J]. Computers & Fluids, 2014, 97(6):31–39.
[4]. Clare J. Anderson, Steven J. Pas, Gaurav Arora, et al. Effect of pyrolysis temperature and operating temperature on the performance of nanoporous carbon membranes[J]. Journal of Membrane Science, 2008, 322(1):19-27.
[5]. D'Alessandro, Deanna M, Smit B, Long, Jeffrey R. Carbon Dioxide Capture: Prospects for New Materials [J]. Angewandte Chemie International Edition, 2010, 49(35):6058-6082.
[6]. Rao P S, Wey M Y, Tseng H H, et al. A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application[J]. Microporous & Mesoporous Materials, 2008, 113(1):499-510.
[7]. 伍艳辉, 张海峰, 李明,等. 6FDA型聚酰亚胺中气体溶解行为的分子模拟[J]. 化工学报, 2009, 60(3):762-768.
[8]. 杨红军. PI/Al2O3和PI/SiO2纳米复合薄膜结构与性能模拟[D]. 哈尔滨理工大学, 2006.
[9]. 闫健娜, 高会元, 张彦改,等. 聚醚酰亚胺基炭分子筛膜的形成及其气体分离性能研究[J]. 功能材料, 2012(4):469-472.  
[10]. 陈瑜. 分子模拟研究气体在含氟聚酰胺酰亚胺膜中的渗透行为[D]. 厦门大学, 2009.
[11].李越. 分子水平设计杂化膜及CO2分离研究[D]. 河北联合大学, 2015.
[12]. 刘然. 新型气体分离膜研制及CO2分离性能研究[D].河北联合大学, 2014.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-80492417/010-80485372 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号