双极膜电渗析由葡萄糖酸钠制备葡萄糖酸的实验研究
作者:王伟,傅荣强,刘兆明
单位: 山东天维膜技术有限公司,潍坊 261061
关键词: 双极膜;电渗析;葡萄糖酸;离子交换
出版年,卷(期):页码: 2017,37(1):107-113

摘要:
 本文采用装配自产双极膜和阳膜的两隔室双极膜电渗析装置研究了将10%葡萄糖酸钠溶夜转化为葡萄糖酸的实验过程。双极膜电渗析过程可使葡萄糖酸钠溶液电导率降低到3 mS/cm,实现超过95%转化率;随着料液中葡萄糖酸钠浓度的逐渐降低,电流密度、电流效率、产酸量均逐渐下降,而产酸能耗逐渐升高。随着膜对电压的升高,电流密度和产酸量均增加,产酸能耗也增加;膜对电压分别为1.3 V、1.5 V和1.8 V时对应电流密度为206 A/m2、278 A/m2和340 A/m2,对应的产酸量为56 mol/m2/h、73 mol/m2/h和98 mol/m2/h,对应产酸直流能耗为48 kWh/kmol、55 kWh/kmol和62 kWh/kmol;膜对电压的升高导致了较低的资本支出和较高的运营支出,最佳的膜对电压取决于总支出的最小化;当采用膜对电压为1.5 V时第1年的总支出最小,但随后年份中膜对电压1.3 V时的总支出最小。
 This paper studied the process of converting 10% sodium gluconate feed to gluconic acid with a two-chambered bipolar membrane electrodialysis pilot module. It was indicated that the electrical conductivity of sodium gluconate could be reduced to 3 mS/cm and the conversion rate could reach 95%. As the concentration of sodium gluconate decreased, the current density, the current efficiency and the acid generation rate gradually declined, but the energy consumption for per unit of produced acid increased significantly. With the increase of the voltage per cell pair, the current density and the acid generation rate increased, but the energy consumption increased too. When the cell-pair voltage was 1.3V, 1.5V and1.8V, the current density was 206A/m2, 278 A/m2 and 340 A/m2 respectively, and the acid generation rate was 56 mol/m2/h, 73 mol/m2/h and 98mol/m2/h respectively, and the energy consumption for per unit of produced acid was 48kWh/kmol, 55kWh/kmol and 62kWh/kmol respectively. The increase of the cell-pair voltage caused the lower capital expenditure and the higher operating expenditure. The optimum cell-pair voltage should be decided by the overall expenditure. With the cell-pair voltage at 1.5V, the first year overall expenditure was the least. But as the growth of the years, the cell-pair voltage at 1.3V could cause the minimum overall expenditure.
第一作者简介:王伟(1986-),女,山东省潍坊市人,硕士生,助理工程师,从事电渗析过程开发。*通讯作者(rongqiangfu@gmail.com)

参考文献:
 1.S. Ramachandran, P.F., A. Pandey, et al. Gluconic acid: properties, applications and microbial production [J]. Food Technology and Biotechnology, 2006. 44(2): 185-195.
2.H. Hustede, H.-J.H., E. Schinzig. Gluconic acid, in Ullmann's Encyclopedia of Industrial Chemistry. 2000.
3.郭凤华, 刘昌俊. 葡萄糖酸合成方法研究进展[J]. 化学工业与工程, 2007(02): 173-177.
4.汪炯. 葡萄糖酸以及葡萄糖酸内酯制备工艺研究. 2012, 暨南大学.
5.Kemperman, A.J.B. Handbook on bipolar membrane technology. 2000: Twente University Press.
6.徐芝勇, 张建国. 双极膜电渗析技术在有机酸生产中的应用进展. 膜科学与技术, 2007(03): 75-79.
7.黄川徽, 李应生, 徐铜文等. 双极膜法生产葡萄糖酸的规模化研究[J]. 中国科学技术大学学报, 2008(06): 656-659.
8.汪耀明. 双极膜电渗析法生产有机酸过程的几个关键科学问题研究. 2011, 中国科学技术大学.
9.金可勇, 金玉水, 周勇等. BPM2型双极膜装置在葡萄糖酸生产中的应用研究[J]. 水处理技术, 2010(10): 105-108.
10.张希照, 金可勇, 柴志国等. 双极膜法制备葡萄糖酸的中试生产研究[J]. 水处理技术, 2010(11): 117-119.
11.金可勇, 胡鉴秋, 金玉水等. 双极膜法制备葡萄糖酸工业化生产研究. 水处理技术, 2011(11): 60-62.
12.Tanaka, Y. Ion exchange membranes fundamentals and applications. 2007: Elesevier.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号