SiO2掺杂对四通道氧化铝中空纤维结构与性能的影响
作者:蔡超,张玉亭,王晓磊,顾学红
单位: 南京工业大学材料化学工程国家重点实验室, 化工学院, 南京210009
关键词: 中空纤维; 二氧化硅; 氧化铝; 莫来石
出版年,卷(期):页码: 2017,37(1):1-7

摘要:
 采用相转化和高温烧结相结合的方法制备四通道α-Al2O3中空纤维, 系统考察了SiO2掺杂含量对中空纤维结构与性能的影响. 结果表明, 1500 ºC煅烧温度下SiO2与Al2O3发生原位烧结反应生成莫来石相, 且莫来石相的含量随SiO2掺杂含量的增加而增大; SiO2掺杂含量的增加有利于提高中空纤维的纯水通量和孔隙率, 当SiO2掺杂含量达到20 mol%时, 中空纤维的纯水通量可达18.11 m3·m-2·h-1, 孔隙率为59.9%. 选用SiO2掺杂含量为20 mol%的中空纤维作为载体, 合成的中空纤维NaA分子筛膜用于90 wt.%乙醇/水渗透汽化分离, 75 ºC下膜的渗透通量高达21.21 kg·m-2·h-1.
 Four-channel α-Al2O3 hollow fibers were fabricated by phase inversion and sintering method. Effects of SiO2 doping content on structure and property of hollow fiber were investigated. The results showed that mullite-phase was formed due to the in situ reaction between SiO2 and Al2O3 at 1500 ºC and its content enlarged with the SiO2 doping content. High pure water flux and porosity of hollow fiber were achieved under high SiO2 doping content. When the SiO2 doping content was 20 mol%, the pure water flux and porosity of as-prepared hollow fiber were 18.11 m3·m-2·h-1 and 59.9 %, respectively. Further, the hollow fiber owning a porosity of 59.9 % was used as support to prepare hollow fiber NaA zeolite membrane for pervaporation of 90 wt.% ethanol/water mixture. The permeation flux of the membrane was 21.21 kg·m-2·h-1 at 75 ºC.
作者简介: 蔡超(1991-), 男, 江苏张家港人, 在读硕士, 从事膜材料制备与应用. *通讯联系人

参考文献:
 [1] Hua F L, Tsang Y F, Wang Y J, et al. Performance study of ceramic microfiltration membrane for oily wastewater treatment [J]. Chem Eng J, 2007, 128(2):169 - 175.
[2] Neomagus H W J P, Saracco G, Wessel H F W, et al. The catalytic combustion of natural gas in a membrane reactor with separate feed of reactants [J]. Chem Eng J, 2000, 77(3):165 - 177.
[3] Wei C C, Li K. Yttria-stabilized zirconia (YSZ)-based hollow fiber solid oxide fuel cells [J]. Ind Eng Chem Res, 2008, 47:1506 - 1512.
[4] Liu S M, Li K. Preparation TiO2/Al2O3 composite hollow fibre membranes [J]. J Membr Sci, 2003, 218(1):269 - 277. 
[5] Wang Z B, Ge Q Q, Shao J, et al. High performance zeolite LTA pervaporation membranes on ceramic hollow fibers by dipcoating-wiping seed deposition [J]. 2009, 131(20):6910 - 6911.
[6] Tan X Y, Liu S M, Li K. Preparation and characterization of inorganic hollow fiber membrane [J]. J Membr Sci, 2001, 188:78 - 95.
[7] Liu Y, Chen O Y, Wei C C, et al. Preparation of yttria-stabilised zirconia (YSZ) hollow fiber membranes [J]. Desalination. 2006, 199(1):360 - 362.
[8] Shi Z Z, Zhang Y T, Cai C, et al. Preparation and characterization of α-Al2O3 hollow fiber membranes with four-channel configuration [J]. Ceram Int, 2015, 41(1):1333 - 1339.
[9] Liu S M, Li K, Hughes R. Preparation of porous aluminium oxide (Al2O3) hollow fibre membranes by a combined phase-inversion and sintering method [J]. Ceram Int, 2003, 29(8):875 - 881.
[10] Liu D Z, Zhang Y T, Jiang J, et al. High-performance NaA zeolite membranes supported on four-channel ceramic hollow fibers for ethanol dehydration [J]. RSC Advances, 2015, 116(5):95866 - 95871.
[11] Ye P, Zhang Y T, Wu H F, et al. Mass transfer simulation on pervaporation dehydration of ethanol through hollow fiber NaA zeolite membranes [J]. AIChE J, DOI:10.1002/aic.15227. 
[12] Zhu Z W, Wei Z L, Sun W P, et al. Cost-effective utilization of mineral-based raw materials for preparation of porous mullite ceramic membranes via in-situ reaction method [J]. Appl Clay Sci, 2016, 120:135 - 141.
[13] van den Berg A W C, Gora L, Jansen J C, et al. Zeolite A membranes synthesized on a UV-irradiated TiO2 coated metal support: the pervaporation performance [J]. J Membr Sci, 2003, 224(1):29 - 37.
[14] van den Berg A W C, Gora L, Jansen J C, et al. Improvement of zeolite NaA nucleation sites on (001) rutile by means of UV-radiation [J]. Micropor Mesopor Mater, 2003, 66(2):303 - 309.
[15] Li L L, Chen M L, Dong Y C, et al. A low-cost alumina-mullite composite hollow fiber ceramic membrane fabricated via phase-inversion and sintering method [J]. J Eur Ceram Soc, 2016, 36(8):2057-2066.
[16] Liu Y M, Wang X R, Zhang Y T, et al. Scale-up of NaA zeolite membranes on α-Al2O3 hollow fibers by a secondary growth method with vacuum seeding [J]. Chinese J Chem Eng, 2015, 23(7):1114 - 1122.
[17] Wang X R, Chen Y Y, Zhang C, et al. Preparation and characterization of high-flux T-type zeolite membranes supported on YSZ hollow fibers [J]. J Membr Sci, 2014, 455:494 - 304.
[18] Aksay I A, Pask J A, Stable and metastable equilibria in the system SiO2-Al2O3 [J]. J Am Ceram Soc, 1983, 9(4):107 - 113.
[19] Chen G L, Qi H, Xing W H, et al. Direct preparation of macroporous mullite supports for membranes by in situ reaction sintering [J]. J Membr Sci, 2008, 318(1):38 - 44.
[20] Han L F, Xu Z L, Cao Y, et al. Preparation, characterization and permeation property of Al2O3, Al2O3-SiO2 and Al2O3-kaolin hollow ?ber membranes [J]. J Membr Sci, 2011, 372(1):154 - 164.
[21] Chen G L, Ge X T, Wang Y, et al. Design and preparation of high permeability porous mullite support for membranes by in-situ reaction [J]. Ceram Int, 2015, 41(7):8282 - 8287.
[22] Sainz M A, Serrano F J, Bastida J, et al. Microstructural evolution and growth of crystallite size of mullite during thermal transformation of kyanite [J]. J Eur Ceram Soc, 1997, 17(11):1277 - 1284.
[23] Hasegawa Y, Abe C, Nishioka M, et al. Formation of high flux CHA-type zeolite membranes and their application to the dehydration of alcohol solutions [J]. J Membr Sci, 2010 364(1): 318 - 324.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号