醋酸纤维素正渗透膜的制备及性能研究
作者:李国亮,王 军,赵长伟,侯得印,刘会娟
单位: (1.中国科学院生态环境研究中心 中科院饮用水科学与技术重点实验室,北京 100085;2.中国科学院生态环境研究中心 工业废水处理与资源化北京市重点实验室,北京 100085;3.中国科学院大学,北京 100049)
关键词: 正渗透;醋酸纤维素;涤纶网;渗透性;耐酸碱性;膜污染
出版年,卷(期):页码: 2017,37(1):92-99

摘要:
 以醋酸纤维素(CA)为膜材料,涤纶网(PET)为增强材料,采用相转化法制备了一种正渗透膜。结果表明,所制得的膜为PET嵌入的非对称膜,厚度约127μm,断裂强度高达37.86N;该膜具有较好的亲水性,接触角为51.4°;孔隙率高达74.2%;在pH为2~11的范围内可长时间保持性能稳定;抗污染性能优异,经简单物理清洗后可基本恢复原始通量;以0.2mol/L NaCl溶液为原料液,1.5mol/L的葡萄糖溶液为汲取液,对膜性能测试结果表明:在FO模式下,水通量和截盐率分别为3.78L/(m2•h)和95.65%;在PRO模式下,水通量和截盐率分别为5.34L/(m2•h)和96.25%。FO模式与PRO模式的水通量比为0.71,表明膜具有较低的内浓差极化效应(ICP)。
A polyethylene terephthalate (PET) mesh enhanced cellulose acetate membrane was fabricated via a phase inversion process. The obtained PET mesh embedded membrane shows asymmetric structure with the thickness of 127μm. The mechanical strength is as high as 37.86N. The high hydrophilic membrane has the contact angle of 51.4°, and the porosity is high to 74.2%. The membrane performance shows long term stability after being immersed in the solutions with the pH in the range of 2 to 11. The membrane has well organic fouling resistance and the permeability can be completely recovered by simple cleaning. The performance of the membrane was tested using 0.2mol/L NaCl as the feed solution and 1.5mol/L glucose as the draw solution. The membrane displayed a water flux of 3.78L/(m2•h) and salt rejection of 95.65% in forward osmosis (FO) mode. While in pressure retarded osmosis (PRO) mode, the water flux was 5.34L/(m2•h) and salt rejection 96.25%. The high ratio (0.71) of water flux in FO mode to that in PRO mode indicates that the fabricated membrane has a lower degree of internal concentration polarization(ICP).
作者简介:李国亮(1985-),男,博士研究生,研究方向为膜技术与应用研究。E-mail: glli@yic.ac.cn *联系作者:王军,研究员;电子邮件:junwang@rcees.ac.cn

参考文献:
 [1] Matsuura T. Progress in membrane science and technology for seawater desalination - a review[J]. Desalination, 2001, 134(1-3):47-54.
[2] 蔡巧云, 王磊, 苗瑞, et al. PVDF/EVOH共混膜制备及其抗污染特性的分析[J]. 膜科学与技术, 2015, 35(1):28-34.
[3] Qin J J, Lay W C L, Kekre K A. Recent developments and future challenges of forward osmosis for desalination: a review[J]. Desalination and Water Treatment, 2012, 39(1-3):123-136.
[4] Cornelissen E R, Harmsen D, de Korte K F, et al. Membrane fouling and process performance of forward osmosis membranes on activated sludge[J]. Journal of Membrane Science, 2008, 319(1-2):158-168.
[5] Wang R, Shi L, Tang C Y, et al. Characterization of novel forward osmosis hollow fiber membranes[J]. Journal of Membrane Science, 2010, 355(1-2):158-167.
[6] Chanukya B S, Patil S, Rastogi N K. Influence of concentration polarization on flux behavior in forward osmosis during desalination using ammonium bicarbonate[J]. Desalination, 2013, 312:39-44.
[7] Boo C, Lee S, Elimelech M, et al. Colloidal fouling in forward osmosis: Role of reverse salt diffusion[J]. Journal of Membrane Science, 2012, 390:277-284.
[8] Parida V, Ng H Y. Forward osmosis organic fouling: Effects of organic loading, calcium and membrane orientation[J]. Desalination, 2013, 312:88-98.
[9] 薛念涛, 潘涛. 正渗透浓差极化与膜污染特征的研究进展[J]. 膜科学与技术, 2015, 35(5):109-113.
[10] Liu L L, Wang D, Wang M, et al. Investigation of the factors influencing the preparation process of cellulose triacetate forward osmosis membrane[J]. Membrane Science and Technology, 2011, 31(1):77-83.
[11] Sairam M, Sereewatthanawut E, Li K, et al. Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis-Desalination using MgSO4 draw solution[J]. Desalination, 2011, 273(2-3):299-307.
[12] Wang K Y, Ong R C, Chung T S. Double-Skinned Forward Osmosis Membranes for Reducing Internal Concentration Polarization within the Porous Sublayer[J]. Industrial & Engineering Chemistry Research, 2010, 49(10):4824-4831.
[13] Wei J, Qiu C Q, Tang C Y, et al. Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes[J]. Journal of Membrane Science, 2011, 372(1-2):292-302.
[14] 沈菊李, 郑宏林, 潘窔伊, et al. PVDF中空纤维超滤膜的耐化学性能研究[J]. 水处理技术, 2015, 41(8):44-47,52.
[15] Li G, Li X M, He T, et al. Cellulose triacetate forward osmosis membranes: preparation and characterization[J]. Desalination and Water Treatment, 2013, 51(13-15):2656-2665.
[16] 李雪梅, 关毅鹏, 陈颖, et al. 超/微滤膜耐酸碱腐蚀及氧化性能实验研究[J]. 海洋技术, 2013, 32(3):59-62,77.
[17] Chen S C, Fu X Z, Chung T S. Fouling behaviors of polybenzimidazole (PBI)–polyhedral oligomeric silsesquioxane (POSS)/polyacrylonitrile (PAN) hollow fiber membranes for engineering osmosis processes[J]. Desalination, 2014, 335(1):17-26.
[18] Strathmann H, Kock K, Amar P, et al. The formation mechanism of asymmetric membranes[J]. Desalination, 1975, 16(2):179-203.
[19] McCutcheon J R, Elimelech M. Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes[J]. Journal of Membrane Science, 2008, 318(1-2):458-466.
[20] Hancock N T, Cath T Y. Solute Coupled Diffusion in Osmotically Driven Membrane Processes[J]. Environmental Science and Technology, 2009, 43(17):6769-6775.
[21] McCutcheon J R, McGinnis R L, Elimelech M. A novel ammonia-carbon dioxide forward (direct) osmosis desalination process[J]. Desalination, 2005, 174(1):1-11.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号