交联型聚芳醚基阴离子交换膜的制备及性能研究
作者:王秀琴,林陈晓,朱爱梅,张秋根,刘庆林
单位: 厦门大学 化学化工学院,厦门,361005
关键词: 烯烃复分解;交联型;阴离子交换膜;燃料电池
出版年,卷(期):页码: 2018,38(2):1-8

摘要:
 燃料电池由于能量转化率高、环境友好等优点,是最具应用前景的能量转化装置之一。阴离子交换膜作为燃料电池的核心部件,仍存在低电导、高溶胀等问题。这里,通过设计聚芳醚结构使其侧链末端含有碳碳双键,在Grubbs二代催化剂作用下进行烯烃复分解反应接枝离子基团,利用剩余不饱和双键在高温下的交联反应,制备出交联型聚芳醚基阴离子交换膜。由于亲水性侧链与疏水性主链的不兼容性,使膜内形成了有利于离子传输的微相分离结构,交联膜的最高电导率达到81.1 mS·cm-1(80 oC)。此外,交联结构能有效地抑制膜的溶胀,交联膜C-FPAE-PH-1.5在30 oC下的溶胀率仅为7.51%,表现出优异尺寸稳定性。C-FPAE-PH-1.5膜在60 oC下1 M KOH水溶液中浸泡360 h后,保留了93.1%的电导率,表现出优异的耐碱性能。
 Fuel cells are regarded as one of the most perspective energy conversion devices due to its high efficiency and low pollution. As a critical component of fuel cells, anion exchange membranes (AEMs) still meet the dilemma of low conductivity and high swelling ratio. Herein, crosslinked poly(arylene ether)s-based anion exchange membranes (AEMs) were prepared via olefin metathesis using Grubbs II catalyst and crosslinking under thermal treatment. The as-prepared AEMs exhibit obvious microphase separated morphology since the hydrophilic side chain is immiscible with hydrophobic poly(arylene ether)s backbone. Finally, the crosslinked AEMs demonstrate a highest conductivity of 81.1 mS·cm-1 at 80 oC. The crosslinked structure is effective at enhancing the dimensional stability of the membranes. C-FPAE-PH-1.5 shows a low swelling ratio of 7.51% at 30 oC. Furthermore, the crosslinked AEMs show robust alkaline stability. C-FPAE-PH-1.5 remained 93.1% of its original conductivity after immersing into a 1 M aqueous KOH solution at 60 oC for 360 h.
作者简介:王秀琴(1993-),女,浙江温州人,在读硕士研究生,主要从事功能膜材料的制备,E-mail:xiu-qin.wang@foxmail.com。通讯作者E-mail:qlliu@xmu.edu.cn。国家自然科学基金(21576226)资助。

参考文献:
 [1]Wang Y J, Qiao J, Baker R, et al. Alkaline polymer electrolyte membranes for fuel cell applications[J]. Chem Soc Rev, 2013, 42(13): 5768-5787.
[2]Varcoe J R, Atanassov P, Dekel D R, et al. Anion-exchange membranes in electrochemical energy systems[J]. Energy Environ Sci, 2014, 7(10): 3135-3191.
[3]林陈晓, 张秋根, 朱爱梅, 等. 燃料电池用阴离子交换膜:基于优化离子电导率的结构调控研究[J]. 膜科学与技术, 2015, 35(5): 102-108.
[4]Pan J, Chen C, Li Y, et al. Constructing ionic highway in alkaline polymer electrolytes[J]. Energy Environ Sci, 2014, 7(1): 354-360.
[5]Liu W, Liu L, Liao J, et al. Self-crosslinking of comb-shaped polystyrene anion exchange membranes for alkaline fuel cell application[J]. J Membr Sci, 2017, 536: 133-140.
[6]Lin C X, Zhuo Y Z, Hu E N, et al. Crosslinked side-chain-type anion exchange membranes with enhanced conductivity and dimensional stability[J]. J Membr Sci, 2017, 539: 24-33. 
[7]Zhu L, Zimudzi T J, Li N, et al. Crosslinking of comb-shaped polymer anion exchange membranes via thiol–ene click chemistry[J]. Polym Chem, 2016, 7(14): 2464-2475.
[8]Robertson N J, Kostalik IV H A, Clark T J, et al. Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications[J]. J Am Chem Soc, 2010, 132(10): 3400-3404.
[9]Liu M, Wang Z, Mei J, et al. A facile functionalized routine for the synthesis of imidazolium-based anion-exchange membrane with excellent alkaline stability[J]. J Membr Sci, 2016, 505: 138-147.
[10]Li N, Wang L, Hickner M. Cross-linked comb-shaped anion exchange membranes with high base stability[J]. Chem comm, 2014, 50: 4092-4095.
[11]Wu X M, Zhang Q G, Lin P J, et al. Towards enhanced CO2 selectivity of the PIM-1 membrane by blending with polyethylene glycol[J]. J Membr Sci, 2015, 493: 147-155.
[12]Lin C X, Zhuo Y Z, Hu E N, et al. Crosslinked side-chain-type anion exchange membranes with enhanced conductivity and dimensional stability[J]. J Membr Sci, 2017,539:24–33
[13]Zhu L, Zimudzi T J, Li N, et al. Crosslinking of comb-shaped polymer anion exchange membranes via thiol–ene click chemistry[J]. Polym Chem, 2016, 7(14): 2464-2475.
[14]Zhang H W, Chen D Z, Xianze Y, et al. Anion‐Exchange Membranes for Fuel Cells: Synthesis Strategies, Properties and Perspectives[J]. Fuel Cells, 2015, 15(6): 761-780.
[15]Ono H, Miyake J, Shimada S, et al. Anion exchange membranes composed of perfluoroalkylene chains and ammonium-functionalized oligophenylenes[J]. J Mater Chem A, 2015, 3(43): 21779-21788.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号