电渗析和离子交换耦合过程对苏氨酸发酵液脱盐
作者:吴俊1 吴永会2 吴翠明
单位: 1合肥工业大学化学与化工学院 安徽,合肥230009; 2盐城师范学院化学与环境工程学院 江苏,盐城 224002
关键词: 电渗析;离子交换;树脂;电去离子
出版年,卷(期):页码: 2018,38(3):116-124

摘要:
?苏氨酸作为一种高附加值的精细化工产品,具有广泛的应用前景。本文采用电渗析(ED)和离子交换(IX)两种方法处理苏氨酸发酵液,并研究了将这两种方法进行耦合的电去离子技术(EDI)的脱盐效果。 ED过程中,通过变化料液浓度和回收次数,结果表明,在30 V工作电压下操作最为有利;料液稀释倍数越大,越快达到脱盐终点,苏氨酸回收率越高,过程能耗也越低;能耗和回收率的数据表明,进行一次回收ED后不适合再继续进行ED回收苏氨酸。对于IX过程,使用717型树脂,对硫酸盐的脱除率和吸附容量分别能达到44.02 %和33.88 mg/g;树脂用量越多,吸附率越高(31.92 %~74.73 %),但吸附容量逐渐降低(38.43 mg/g~14.99 mg/g);发酵液初始浓度增大,溶液中吸附质离子增多,树脂的吸附容量增加。对于EDI过程,达到脱盐终点的速度比ED过程更快,脱盐效率也更高。综合效果表明,混合添加5 mL Na型和5 mL Cl型树脂,采用EDI过程处理发酵液,在能耗(0.269 kW h/L)和脱盐速率方面都更有优势。
 Threonine (THR) is a high-value fine chemical which has a wide application prospect. Two methods of electrodialysis (ED) and ion exchange (IX) were used to treat fermentation broth and the desalting effect of electrodeionization (EDI) technology was studied by coupling the two methods. Varying of the feed solution concentration and the recycling times during ED showed that operation voltage at 30 V was more favorable; higher dilution ratio could lead to shorter time in reaching the end point of desalination, higher THR recovery rate and lower energy consumption. Energy consumption and recovery rate showed that, after recycling of one time, it was not appropriate to proceed with ED recovery of THR. For IX, the removal rate and adsorption capacity of the sulfate were 44.02 % and 33.88 mg/g by 717 type resin, respectively. The more resin dosage, the higher adsorption rate (31.92 %~74.73 %), but the lower adsorption capacity (38.43 mg/g~14.99 mg/g). As the initial concentration of sulfate increased, the adsorption capacity increased in the feed, and the adsorption capacity increased. For EDI, the rate of desalting as well as the desalination rate was higher than that of ED. Comprehensive results show that EDI process with the addition of 5mL Na and 5mL Cl type resins has advantages in energy consumption (0.269 kW h/L) and desalination rates for treating the THR fermentation broth. 
吴翠明(1978-),女,博士,教授,电话: +86-551-290-1450. E-mail: cmwu@ustc.edu.cn.研究方向:膜材料与膜分离过程

参考文献:
[1] 付勇. 苏氨酸母液中氨基酸的分离纯化研究[D]. 江南大学, 2007.
[2] 范爱勇. 氨基酸发酵液电渗析脱盐的研究[D]. 中国海洋大学, 2013.
[3] 杨文龙, 王倩, 杨鹏波, 丛威. 谷氨酸发酵废水电渗析脱盐[J]. 过程工程学报, 2013, 13(3): 500-504.
[4] 陈艳, 张亚萍, 岳明珠. 电渗析技术在氨基酸生产中的应用[J]. 水处理技术, 2011, 37(11):10-14.
[5] 张维润. 电渗析工程学[M]. 北京:科学出版社, 1995. 1-2.
[6] Wang Y, Zhang Z, Jiang C, et al. Recovery of gamma-aminobutyric acid (GABA) from reaction mixtures containing salt by electrodialysis[J]. Sep. Purif. Technol, 2016, 170:353-359.
[7] 程浩, 陈亚中, 崔鹏. A222型阴离子交换树脂脱除HPPH+体系中的SO42-、NO3-[J]. 化工进展, 2016, 35:316-320.
[8] 杨飞黄. 电渗析(ED)技术和电去离子技术(EDI)的应用研究[J]. 中国新技术新产品, 2015(5):42-44.
[9] Bi J, Peng C, Xu H, et al. Removal of nitrate from groundwater using the technology of electrodialysis and electrodeionization[J]. Desal. Wat. Trea, 2011, 34(1-3):394-401.
[10] Gu J, Wu C, Wu Y, et al. PVA-based hybrid membranes from cation exchange multisilicon copolymer for alkali recovery[J]. Desalination, 2012, 304(42):25-32.
[11] Wu J, Xu C, Zhang C, et al. Desalination of l-threonine (THR) fermentation broth by electrodialysis[J]. Desal. Wat. Trea, 2017, 81:47-58.
[12] Wu Y, Luo J, Zhao L, et al. QPPO/PVA anion exchange hybrid membranes from double crosslinking agents for acid recovery[J]. J Membr Sci, 2013, 428(2):95-103.
[13] Yan H, Wu C, Wu Y. Separation of alumina alkaline solution by electrodialysis: Membrane stack configuration optimization and repeated batch experiments[J]. Sep. Purif. Technol, 2015, 139:78-87.
[14] Xu C, Xue S, Wang P, et al. Diffusion dialysis for NaCl and NaAc recovery using polyelectrolyte complexes/PVA membranes[J]. Sep. Purif. Technol, 2017, 172:140-146.
[15] 焦扬. 赖氨酸离交废液资源化的新方法[D]. 石河子大学, 2009.
[16] 汪耀明, 李为, 徐铜文. 电渗析技术清洁分离纯化肌氨酸[J]. 化工学报, 2015, 66(8):3137-3143.
[17] 翁连进, 甘林火, 王士斌,等. 717型阴离子交换树脂吸附L-赖氨酸的特性[J]. 离子交换与吸附, 2004, 20(2):119-124.
[18] 赵婧, 冯骉. 氨基酸溶液电渗析脱盐过程的研究[J]. 食品工业科技, 2005, 26(8):57-60.
[19] Geraldes V, Afonso M D. Limiting current density in the electrodialysis of multi-ionic solutions[J]. J Membr Sci, 2010, 360(1):499-508.
[20] Valerdi-Pérez R, Ibáñez-Mengual J. Current—voltage curves for an electrodialysis reversal pilot plant: determination of limiting currents[J]. Desalination, 2001, 141(1):23-37.
[21] 田中良修. 离子交换膜基本原理及应用[M]. 化学工业出版社, 2010.
[22] Chen Y, Zhang Y, Yue M, et al. Production of L-lysine from L-lysine monohydrochloride by electrodialysis[J]. Desal. Wat. Treat, 2011, 25(1-3):291-296.
[23] 李长海, 党小建, 张雅潇. 电渗析技术及其应用[J]. 电力科技与环保, 2012, 28(4):27-30.
[24] 张军伟, 王弦, 刘志维. 阴离子交换树脂吸附柠檬酸中的硫酸根离子[J]. 应用化工, 2013, 42(06):1043-1046.
[25] 刘飞妮, 章宏梓, 张国亮,等. 离子交换-电渗析耦合分离过程的实验研究[C]. 广西化学化工研究生学术论坛. 2006.
[26] 李志军. 电去离子技术脱盐机理的研究[D]. 武汉大学, 2005.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号