设为首页 电子邮箱 联系我们    
首页期刊简介编委会行业动态书刊信息广告业务学术会议联系我们
位置:首页 >> 电子期刊 >> 正文
膜表面纳米TiO2修饰层的构建与抗蛋白质污染性能
作者:郑细鸣 范荣玉 
单位:绿色化工技术福建省高等学校重点实验室 武夷学院生态与资源工程学院 
关键词:聚丙烯微孔膜 表面修饰 蛋白质污染 亲水性 纳米二氧化钛 
分类号:O63; TQ028.8
出版年,卷(期):页码:2018,38(4):8-13
摘要:

 采用纳米二氧化钛胶体和多巴胺作为修饰剂,通过多巴胺的氧化自聚将纳米二氧化钛颗粒沉积到聚丙烯微孔膜(MPPM)的表面。采用FTIRSEM对膜进行了表征,发现修饰后膜表面多孔形态未发生变化,仅在膜表面均匀地负载着大量的纳米TiO2颗粒。静态水接触角及纯水通量测试结果显示,修饰膜具有优异的亲水性,在0.10 MPa下,MPPM的纯水通量为0,而经纳米TiO2修饰后的膜纯水通量可稳定在4625 L/(m2·h)左右。蛋白质静态吸附与蛋白质溶液过滤研究结果表明修饰具有良好的抗蛋白质污染性能,蛋白质溶液通量下降率仅为35%且膜表面的蛋白质可用水清洗除去,通量恢复率达83%

 Using nano TiO2 colloid and dopamine as modifiers, nano TiO2 particles were uniformly deposited on the surface of microporous polypropylene membrane (MPPM) by oxidation and self polymerization of dopamine. The membranes were characterized with Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results confirmed that the porous morphology of the membranes did not change after modification, and only a large number of nano TiO2 particles were evenly loaded on the membrane surfaces. The test results of static water contact angle and pure water flux show that the modified membranes had excellent hydrophilicity. Under 0.10 MPa, the pure water flux of MPPM was 0, while the pure water flux of the membrane modified by nano TiO2 could be stabilized at 4625 L/(m2·h). The results of protein static adsorption and protein solution filtration show that the modified membrane had good anti protein pollution performance, and the flux decline rate of protein solution was as low as 35%. Moreover, the protein on the membrane surfaces could be removed by water, and the flux recovery rate was as high as 83%. 

基金项目:
福建省自然科学基金(2015J01602, 2014J01056)
作者简介:
第一作者简介: 郑细鸣(1970–),男,南靖县人,教授,博士,研究方面:膜表面工程及水处理技术,E-mail: zhengxm70@163.com
参考文献:

 [1] Buonomenna M G. Membrane process for sustainable industrial growth [J]. RSC Advances, 2013, 3 (17): 5694-5740.

[2] Mansouri J, Harrisson S, Chen V. Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities [J]. Journal of Materials Chemistry, 2010, 20 (22): 4567-4586. 
[3] Guo H F, Ulbricht M. The effects of (macro)molecular structure on hydrophilic surface modification of polypropylene membranes via entrapment [J]. Journal of Colloid and Interface Science, 2010, 350 (1):  99-109.
[4] Zhao Y H, Zhu X Y, Wee K H, et al. Achieving highly effective non-biofouling performance for polypropylene membranes modified by UV-induced surface graft polymerization of two oppositely charged monomers [J]. Journal of Physical Chemistry B, 2010, 114 (7): 2422-2429.
[5] Yi X S, Yu S L, Shi W X, et al. Separation of oil/water emulsion using nano-particle (TiO2 / Al2O3) modified PVDF ultrafiltration membranes and evaluation of fouling mechanism [J]. Water Science & Technology, 2013, 67 (3): 477-484.
[6] 郑细鸣, 范荣玉, 肖启瑞, 孔祥龙. 超亲水SiO2修饰膜的构建及其油水乳液分离性能 [J]. 化工学报, 2016, 67(5): 1957-1964.
[7] Chen P C, Wan L S, Xu Z K. Bio-inspired CaCO3 coating for superhydrophilic hybrid membranes with high water permeability [J]. Journal of Materials Chemistry, 2012, 22 (42): 22727-22733.
[8] Yi X S, Yu S L, Shi W X. Estimation of fouling stages in separation of oil/water mulsion using nano-particles Al2O3/TiO2 modified PVDF UF membranes [J]. Desalination, 2013, 319 (14): 38-46.
[9] Pi J K, Yang H C, Wan L S, et al.  Polypropylene microfiltration membranes modified with TiO2 nanoparticles for surface wettability and antifouling property [J]. Journal of Membrane Science, 2016, 500 (1): 8-15.
[10] Pan J, He Y H, Wang Y, et al. Preparation of polysulfone-Fe3O4 composite ultrafilitration membrane and its behavior in magnetic field [J]. Journal of Membrane Science, 2006, 284 (1):: 9-16.
[11] 樊晋琼, 苏 燕, 王 铎. 二氧化钛/聚酰胺正渗透复合膜的制备与表征[J]. 水处理技术, 2012, 38(9): 43-46.
[12] 李健生, 梁祎, 王慧雅, 等. TiO2/PVDF复合中空纤维膜的制备和表征[J]. 高分子学报, 2004, 1(5): 709-712.
[13] 钟翔燕. 聚偏氟乙烯/二氧化钛原位杂化超滤膜的制备及效能研究[D]. 哈尔滨工业大学, 2015
[14] 邱恒, 薛罡. 纳米二氧化钛改性聚醚砜超滤膜[J]. 化工环保, 2009, 29(6): 554-558.
[15] 王忠明, 王 喆, 郑业灿. 溶胶-凝胶法制备磺化聚砜/二氧化钛超滤膜[J]. 塑料工业, 2011, 39(6): 91-94.
[16] 赵永军, 李 方, 李佳峰, 等. 氧化石墨烯与纳米二氧化钛共混改性PES超滤膜的对比分析[J]. 膜科学与技术, 2016, 36(3): 13-20.
[17] Pasmore M, Todd P, Smith S, et al. Effects of ultrafiltration membrane surface properties on Pseudomonas aeruginosa biofilm initiation for the purpose of reducing biofouling [J]. Journal of Membrane Science, 2001, 194 (1): 15-32.
[18] Zhang C, Gong L, Xiang L, et al. Deposition and adhesion of polydopamine on the surfaces of varying wettability [J]. ACS Applied Materials & Interfaces, 2017, 9 (36): 30943-30950.
服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部       地址:北京市朝阳区北三环东路19号蓝星大厦  邮政编码:100029电话:010-80492417/010-80485372  传真:010-80485372邮箱:mkxyjs@163.com

京公网安备 11011302000819 号