纤维素/壳聚糖共混纳滤膜制备及其染料脱盐性能研究
作者:陈慧娟1,纪晓声1,陈霄翔2,张林3
单位: 1.浙江大学海洋学院,舟山316021;2.杭州超纳净水设备有限公司,杭州 311243 3.浙江大学化学工程与生物工程学院,杭州 310027
关键词: 纤维素;壳聚糖;离子液体;染料脱盐;纳滤膜
出版年,卷(期):页码: 2018,38(4):27-32

摘要:
 纤维素因其优良的机械性能和成膜性而成功地应用于纳滤膜制备。但纯纤维素纳滤膜表面呈电负性,对低分子量水溶性染料和Na2SO4均具有高的截留率,Na2SO4的脱除率有待于进一步提高。本文将荷正电的壳聚糖和纤维素共混,以离子液体1-乙基-3-甲基咪唑醋酸盐(EMIMAc)和二甲基亚砜DMSO为溶剂,水为凝固浴,无纺布为支撑层,采用相转化法,成功制备了纤维素/壳聚糖共混弱正电纳滤膜。结果表明,当纤维素和壳聚糖质量比为1:1时,制备的共混纳滤膜分离性能最优。该膜在0.5 MPa的错流条件下,对直接染料的截留率较高,如刚果红的截留率为99.99%;对活性染料(活性黑5、活性蓝19)的截留率也可达到80-90%;而膜对无机盐截留率均较低,NaCl和Na2SO4的截留率分别在10%和1%以下。上述研究结果表明,该膜可实现染料和盐的高效分离。
 Cellulose is applied to prepare nanofiltration membrane successfully due to excellent mechanical stability and film-forming property. However, the bare cellulose membrane surface is negatively charged, and then it has high rejection of low molecular weight water-soluble dyes and Na2SO4, so the removal rate of Na2SO4 remains to be further improved. In this study, a weak positively charged CEL/CS blend NF membrane was prepared successfully via phase inversion method using cellulose and chitosan as membrane materials, ionic liquid 1-ethyl-3-methyl-imidazolium acetate (EMIMAc) and DMSO as solvents, water as coagulation bath on a non-woven fabric substrate. The results showed that the prepared blend nanofiltration membrane had the best separation performance when the mass ratio of cellulose to chitosan was 1:1. The membrane had a high rejection of direct dye (congo red:99.99%) and the retention of reactive dyes were 80-90% (reactive black 5 and reactive blue 19) under the cross-flow conditions of 0.5 MPa. However, the rejection of inorganic salts were low, such as NaCl and Na2SO4 were below 10% and 1% respectively. The above results showed that the membrane enabled efficient separation of dye and salt.
第一作者简介:陈慧娟(1993.12-),女,安徽合肥人,硕士研究生,从事水处理纳滤膜的制备及应用,E-mail:chenhuijuan@zju.edu.cn 通讯作者,E-mail:linzhang@zju.edu.cn

参考文献:
 [1] Y M Slokar, A M Le Marechal. Methods of decoloration of textile wastewaters[J]. Dyes Pigments, 1998, 37(4):  335-356.
[2] A Rozzi, M Antonelli, M Arcari. Membrane treatment of secondary textile effluents for direct reuse[J]. Water Sci Technol, 1999, 40(4-5):409-416.
[3] M Amirilargani, M Sadrzadeh, E J R Sudholter, et al. Surface modification methods of organic solvent nanofiltration membranes[J]. Chemical Engineering Journal, 2016, 289:562-582.
[4] S P Sun, T A Hatton, S Y Chan, et al. Novel thin-film composite nanofiltration hollow fiber membranes with double repulsion for effective removal of emerging organic matters from water[J]. J Membrane Sci, 2012, 401:152-162.
[5] Y K Ong, F Y Li, S P Sun, et al. Nanofiltration hollow fiber membranes for textile wastewater treatment: Lab-scale and pilot-scale studies[J]. Chem Eng Sci, 2014, 114:51-57.
[6] R J Moon, A Martini, J Nairn, et al. Cellulose nanomaterials review: structure, properties and nanocomposites[J]. Chem Soc Rev, 2011, 40(7):3941-3994.
[7] A Dufresne. Comparing the mechanical properties of high performances polymer nanocomposites from biological sources[J]. J Nanosci Nanotechno, 2006, 6(2):322-330.
[8] X L Li, L P Zhu, B K Zhu, et al. High-flux and anti-fouling cellulose nanofiltration membranes prepared via phase inversion with ionic liquid as solvent[J]. Sep Purif Technol, 2011, 83:66-73.
[9] T S Anokhina, T S Pleshivtseva, V Y Ignatenko, et al. Fabrication of Composite Nanofiltration Membranes from Cellulose Solutions in an [Emim] OAc-DMSO Mixture[J]. Petrol Chem+, 2017, 57(6):477-482.
[10] Y P Zheng, G H Yao, Q B Cheng, et al. Positively charged thin-film composite hollow fiber nanofiltration membrane for the removal of cationic dyes through submerged filtration[J]. Desalination, 2013, 328:42-50.
[11] P S Zhong, N Widjojo, T S Chung, et al. Positively charged nanofiltration (NF) membranes via UV grafting on sulfonated polyphenylenesulfone (sPPSU) for effective removal of textile dyes from wastewater[J]. J Membrane Sci, 2012, 417:52-60.
[12] 吴俊, 王军, 蒋淑红,等. PVC-SPES共混膜的制备及其在废水处理中的应用研究[J]. 水处理技术, 2014, 12:29-34.
[13] R Jayakumar, D Menon, K Manzoor, et al. Biomedical applications of chitin and chitosan based nanomaterials-A short review[J]. Carbohyd Polym, 2010, 82(2):227-232.
[14] L A Pothan, C Bellman, L Kailas, et al. Influence of chemical treatments on the electrokinetic properties of cellulose fibres[J]. J Adhes Sci Technol, 2002, 16(2):157-178.
[15] J Y Lin, W Y Ye, M C Baltaru, et al. Tight ultrafiltration membranes for enhanced separation of dyes and Na2SO4 during textile wastewater treatment[J]. J Membrane Sci, 2016, 514:217-228.
[16] P Pradanos, J I Arribas, A Hernandez. Mass-Transfer Coefficient and Retention of Pegs in Low-Pressure Cross-Flow Ultrafiltration through Asymmetric Membranes[J]. J Membrane Sci, 1995, 99(1):1-20.
[17] L Wang, N X Wang, G J Zhang, et al. Covalent Crosslinked Assembly of Tubular Ceramic-based Multilayer Nanofiltration Membranes for Dye Desalination[J]. Aiche J, 2013, 59(10):3834-3842.
[18] P L Chen, X Ma, Z X Zhong, et al. Performance of ceramic nanofiltration membrane for desalination of dye solutions containing NaCl and Na2SO4[J]. Desalination, 2017, 404:102-111.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号