MBfR中改性PVDF疏水中空纤维膜表面微生物附着生长特性研究
作者:郭东岳,于越,王暄,吕晓龙,袁晓彤,张利娟
单位: 分离膜与膜过程国家重点实验室,环境与化学工程学院,天津工业大学
关键词: 膜生物膜反应器(MBfR);疏水性PVDF中空纤维膜;表面改性;生物亲和性
出版年,卷(期):页码: 2018,38(4):56-63

摘要:
 针对膜生物膜反应器(Membrane Biofilm Reactor,MBfR)研究中疏水性微孔膜供氧能力不足、生物亲和性能较差等问题,采用界面聚合及自聚合法对自制的疏水性聚偏氟乙烯(PVDF)中空纤维膜进行表面改性,制备出适合于MBfR技术的PVDF/DOPA改性膜与PVDF/TMC-CS改性膜。选取混合微生物体系究微生物在原膜和改性膜表面上的黏附生长情况,评价三种膜材料生物亲和性的差异;并对三种膜材料表面生物膜的MBfR有机物及氨氮处理特性进行初步研究。研究结果表明,与原膜相比,PVDF/DOPA改性膜在微生物附着生长实验后其上生长的微生物厚度最高,为25 μm;微生物膜优先成熟且其上附着的微生物数量较多,表明PVDF/DOPA改性膜更易被微生物附着生长,生物亲和性最高;附着微生物的PVDF/DOPA改性膜废水处理能力较高,对TOC和NH4+-N的去除效果可稳定保持在93.48%、84.74%左右,同时对废水的抗有机冲击负荷能力明显优于另两种膜材料系统。
 Aiming at the insufficient oxygen supply capacity and bioaffinity property of hydrophobic microporous membrane in MBfR, hydrophobic PVDF hollow fiber membrane was modified by self-polymerization and interfacial polymerization to prepare surface modified membrane of PVDF/DOPA and PVDF/TMC-CS that suitable for MBfR technology. In this thesis use mixed microorganism as biological indicator in biological affinity, studying the attachment and growth on membranes to evaluate the difference of biological affinity between the different membranes. The preliminary study on the removal characteristics of different membrane was carried out. The results showed that, compared with the PVDF membrane, the PVDF / DOPA modified membrane had the highest Microorganism thickness of 25 μm after the Microorganism attachment and growth. biofilm thickness preferentially matured with more microorganism attached, indicating that the PVDF/DOPA modified membrane have the highest biological affinity; after microorganism attached and growed, the effect of PVDF/DOPA modified membrane on TOC and NH4+-N was stable at 93.48% and 84.74%, capacity of sewage treatment and anti-organic impact load was significantly better than that of other membranes. 
作者简介:郭东岳(1992-),女,硕士研究生,疏水性PVDF膜表面改性及MBfR应用研究。通讯联系人:Email:xuanwang@tjpu.edu.cn;E-mail:luxiaolong@263.net

参考文献:
 [1].张杨, 李庭刚, 强志民,等. 膜曝气生物膜反应器研究进展[J]. 环境科学学报, 2011, 31(6): 1133-1143.
[2].Martin K J, Nerenberg R. The membrane biofilm reactor (MBfR) for water and wastewater treatment: Principles, applications, and recent developments[J]. Bioresource Technology, 2012, 122(10): 83-94.
[3].Liu Y, Ngo H H, Guo W, et al. Autotrophic nitrogen removal in membrane-aerated biofilms: archaeal ammonia oxidation versus bacterial ammonia oxidation[J]. Chemical Engineering Journal, 2016, 302:535-544.
[4].Potvin C M, Long Z, Zhou H. Removal of tetrabromobisphenol a by conventional activated sludge, submerged membrane and membrane aerated biofilm reactors[J]. Chemosphere, 2012, 89(10): 1183-1188.
[5].苏冬艳. 中空纤维膜曝气复氧改善河水水质的试验研究[D]. 河北工程大学, 2009.
[6].沈志松, 钱国芬, 朱晓慧,等. 无泡式中空纤维膜发酵供氧的初步研究[J]. 膜科学与技术, 1998, 18(6): 42-48.
[7].成晓云, 裴觉民, 罗俊,等. 用膜氧合器排除水产养殖中氨氮的探索[J]. 渔业现代化, 2000(6): 16-18.
[8].Reij M W, Keurentjes J T F, Hartmans S. Membrane bioreactors for waste gas treatment[J]. Journal of Biotechnology, 1998, 59(3): 155-167.
[9].邢明皓, 宋震宇, 李保安,等. 界面聚合法制备MABR中空纤维膜[J]. 化学工业与工程, 2013, 30(1): 48-52.
[10].王琴, 胡亮, 侯飞飞,等. 左旋多巴改性MABR中空纤维膜[J]. 化学工业与工程, 2015, 32(6): 52-57
[11].Hibiya K, Tsuneda S, Hirata A. Formation and characteristics of nitrifying biofilm on a membrane modified with positively-charged polymer chains[J]. Colloids & Surfaces B Biointerfaces, 2000, 18(2): 105-112.
[12].温琦. 疏水性PVDF中空纤维膜表面改性及MBfR应用研究[D]. 天津工业大学, 2015.
[13].袁晓彤. MBFR中疏水性PVDF中空纤维膜表面改性及耐污染性能研究[D]. 天津工业大学, 2017.
[14].国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法, (第四版)[M]. 中国环境科学出版社, 2002.
[15].Celmer D, oleszkiewicz J A, Cicek N. Impact of shear force on the biofilm structure and performance of a membrane biofilm reactor for tertiary hydrogen-driven denitrification of municipal wastewater[J]. Water Research, 2008, 42(12): 3057-3065.
[16].高延耀, 顾国维, 周琪. 水污染控制工程.下册[M]. 高等教育出版社, 2007.
[17].Thomas W E, Nilsson L M, Forero M, et al. Shear dependent ‘stick and roll’ adhesion of type 1 fimbriated Escherichia coli[J]. Molecular Microbiology, 2004, 53(5): 1545-1557.
[18].Borlee B R, Goldman A D, Murakami K, et al. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix[J]. Molecular Microbiology, 2010, 75(4): 827–842.
[19].Hyde F W, Alberg M, Smith K. Comparison of fluorinated polymers against stainless steel, glass and polypropylene in microbial biofilm adherence and removal.[J]. Journal of Industrial Microbiology & Biotechnology, 1997, 19(2): 142-149.
[20].Lee J H, Lee S J, Khang G, et al. The effect of fluid shear stress on endothelial cell adhesiveness to polymer surfaces with wettability gradient.[J]. Journal of Colloid & Interface Science, 2000, 230(1): 84-90. 
[21].Flemming H C, Wingender J. The biofilm matrix.[J]. Nature Reviews Microbiology, 2010, 8(9): 623-633.
[22].Machado M C, Cheng D, Tarquinio K M, et al. Nanotechnology: pediatric applications.[J]. Pediatric Research, 2010, 67(5): 500-504.
[23].Truong V K, Rundell S, Lapovok R, et al. Effect of ultrafine-grained titanium surfaces on adhesion of bacteria[J]. Applied Microbiology & Biotechnology, 2009, 83(5): 925-937.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号