无机膜气体分离的温度-压力-渗透率方程及其在吸附上的应用
作者:李东,郝静远
单位: 西安思源学院,能源及化工大数据应用教学研究中心,西安 710038
关键词: 气体分离;温度;压力;气体渗透率;煤层气;吸附
出版年,卷(期):页码: 2018,38(4):127-131

摘要:
 综合考虑努尔森(Knudsen)扩散和表面扩散,理论上推导出适用于无机膜气体分离的温度-压力-气体渗透率方程。方程包含4个有物理意义的参数A、 B、 ?和?。A和B与无机膜的性能有关。?显示温度的影响。?显示压力的影响。基于无机膜气体分离与煤岩煤层气吸附的相似性,将温度-压力-气体渗透率方程衍变成仍然有4个参数(A、 B、 ?和?)和相同的数学形式的温度-压力-气体吸附方程。用松藻煤电公司8#煤层煤样的系列兰格缪尔等温吸附实验数据来验证温度-压力-吸附方程的适用性。平均相对偏差计算法和作图法都验证温度-压力-吸附方程的适用性。
 Considering the Knudsen diffusion and surface diffusion, a modified diffusion equation for gas permeation through microporous media was obtained theoretically as a function of both temperature and pressure. The diffusion equation contains four parameters (A, B, ? and ?) with physical meaning. A and B reveal the properties of inorganic membrane. The pressure effect ? on the surface diffusion stems from the adsorbate concentration. The temperature effect ? is related to the relative energy difference between the minimum potential energy and the activation energy for an adsorbed molecule. There are high degrees of similarity between inorganic membrane gas separation and coal seam gas adsorption. A temperature-pressure-adsorption equation was, therefore, evolved with the same mathematical formula and four parameters. The Langmuir series isothermal adsorption data of Songzao 8# coal seam are used to verify the applicability of temperature-pressure-adsorption equation. Both the average relative deviation calculation method and the mapping method verify the applicability.
第一作者简介:李东(1953-),男,美籍华人,美国辛辛那提大学博士学位,教授,主要从事化工工艺与装备,精细化工,聚合物的制备和应用研究.

参考文献:
 [1] 廖传华。无机膜气体分离的机理和模型[J], 硅酸盐通报,2004 2:48-51.
LIAO Chuan-hua. Mechanisms and models of gas transfer for inorganic membrane[J], Bulletin of the Chinese Ceramic Society, 2004 2:48-51.
[2] 蒋柏泉,张文龙,严进,等。无机膜分离气体机理及模型[J], 南昌大学学报(工科版),1998 20(4):7-12
JIANG Bo-quan, ZHANG Wen-long, YAN Jin, et al. Gas separation mechanism and model for inorganic membrane[J],  Journal of Nanchang University (Engineering & Technology), 1998, 20(4):7-12.
[3]K. Kammermeyer and D.D. Wyrick. Effect of adsorption in barrier separation[J], Ind. Eng. Chem., 1958, 50(9): 1309-1310.
[4]S.T. Hwang and K. Kammermeyer. Surface diffusion in micro-porous media, Can. J. Chem. Eng., 1966, 44:82-89.
[5]S.T. Hwang and K. Kammermeyer. Evidence of surface diffuse of helium[J],  Sep. Sci., 1967, 2(4): 555-557.
[6]S.T. Hwang and K. Kammermeyer. Gaseous diffusion and flow in commercial catalysts at pressure levels above atmospheric[J],  Ind. Eng. Chem., Fundam., 1968, 7(2):202-210.
[7]S.T. Hwang. Surface diffusion parallel with Knudsen flow[J],  Sep. Sci., 1976, 11(1): 17-27.
[8]D.O. Cooney. On the basis for the Freundlich adsorption isotherm[J], Chem. Eng. Comm., 1990 94(1): 27-34.
[9]I. Langmuir. The adsorption of gases on plane surfaces of glass, mica and platinum[J], J Am Chem Soc. 1918, 40:1361-1403.
[10]D. Li and S.T. Hwang. Preparation and characterization of silicon base inorganic membrane for gas separation[J], J. of Membrane Sci., 1991,59:331-352.
[11]D. Li and S.T. Hwang. Gas separation by silicon based inorganic membrane at high temperature [J]. J. of Membrane Sci., 1992,66: 119-127.
[12]王佟,王庆伟,傅雪海。煤系非常规天然气的系统研究及其意义[J], 煤田地质与勘探, 2014  42(1)  24-27.
[13]李建忠,董大忠,陈更生,等.中国页岩气资源前景与战略地位[J].天然气工业,2009 ,29(5) :11−16.
[14]赵志根,唐修义,张光明。 较高温度下煤吸附甲烷实验及其意义[J], 煤田地质与勘探,2001, 29(4):29-31.
ZHAO Zhi-gen, TANG Xui-yi, ZHANG Guang-ming. Experiment and significance of iso-thermal adsorption of coal on methane under higher temperature[J], Coal Geology & Exploration, 2001, 29(4):29-31.
[15] 张天军,许鸿杰,李树刚,等.温度对煤吸附性能的影响[J].煤炭学报,2009,34(6):802-805.
ZHANG Tian-jun,XU Hong-jie, LI Shu-gang, et al. The effect of temperature on the adsorbing capability of coal[J], JOURNAL 0F CHINA COAL SOCIETY, 2009,34(6):802-805.
[16] 钟玲文,郑玉柱,员争荣,等. 煤在温度和压力综合影响下的吸附性能及气含量预测[J] 煤炭学报 2002,27(6): 581-585.
ZHONG Ling-wen,ZHENG Yu-zhu, YUN Zhengrong, et.al. The adsorption capability of coal under integrated influence of temperature and pressure and predicted of content quantity of coal bed gas[J], JOURNAL OF CHINA COAL SOCIETY, 2002,27(6): 581-585.
[17] 赵丽娟,秦勇,Geoff Wang, 等。 高温高压条件下深部煤层气吸附行为[J] 高校地质学报 2013,19(4):648-654.
ZHAO Lijuan, QIN Yong, Geoff WANG, et al. Adsorption Behavior of Deep Coal-bed Methane Under High Temperatures and Pressures[J], Geological Journal of China Universities, 2013,19(4):648-654.
[18] 傅雪海,秦勇,权彪,等。中煤级煤吸附甲烷的物理模拟与数值模拟研究[J], 地质学报, 2008, 82(10):1368-1371.
FU Xue-hai, QIN Yong, QUAN Biao, et al. Study of Physical and Numerical Simulations of Adsorption Methane Content on Middle rank Coal[J], ACTA GEOLOGICA SINICA, 2008, 82(10):1368-1371.
[19] 马东明,张遂安,蔺亚兵.煤的等温吸附解吸实验及精确拟合[J].煤炭学报,2011,36(3):476-480.
MA Dong-min,Zhang Sui-an,Lin Ya-bing.Isothermal adsorption and desorption experiment of coal and experimental results accuracy fitting[J].Journal of China Coal Society,2011,36(3):476-480.
[20] 赵天逸,宁正福,曾彦。 页岩与煤岩等温吸附模型的对比分析[J], 新疆石油地质, 2014, 35(3):319-323
ZHAO Tian-yi, NING Zheng-fu, ZENG Yan. Comparative analysis of isothermal adsorption models for shales and coals[J],  XINJIANG PERTROLEUM GEOLOGY[J], 2014, 35(3):319-323.
[21] 张翔, 陶云奇. 不同温度条件下煤对瓦斯的等温吸附实验研究[J], 煤炭工程, 2011, 4:87-89.
ZHANG Xiang, TAO Yun-qi. Experimental study on isothermal adsorption of gas on coal under different temperature conditions[J], Coal Engineering, 2011,4:87-89.
 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号