聚苯并咪唑膜用于膜法酸碱两性电解水制氢研究
作者:刘帅,雷青,王保国
单位: 清华大学化学工程系,北京 100084
关键词: 电解水制氢,析氢极化,聚苯并咪唑膜,水解离,季铵碱
分类号: TQ151.1
出版年,卷(期):页码: 2018,38(5):1-7

摘要:
 针对电解水制氢过程能耗过高的问题,提出膜法酸碱两性电解水过程。用隔膜将高浓度的酸碱电解液分隔,在酸性溶液中发生析氢反应,提高电化学反应活性,降低析氢过电位。该过程核心问题是阻止酸碱中和,限制对离子跨膜渗透。本文选择对离子体积较大的季铵碱作为碱溶液,分析酸碱种类、对离子体积与离子渗透的关系,探讨电解电流与酸碱种类、浓度、温度的关系。为了阻隔高浓度酸碱中和,使用聚苯并咪唑膜作为电解槽隔膜,经过酸或碱掺杂形成传导离子能力。初步验证了聚苯并咪唑膜在酸碱溶液中的稳定性,为发展膜法酸碱两性电解水制氢技术提供依据。
 In order to reduce energy consumption in electrolytic hydrogen production, a novel method named acid-base amphiprotic water electrolysis using membranes is proposed. The membrane separates acidic electrolyte and alkaline electrolyte. Hydrogen-evolving reactions (HER) occurs in acidic electrolyte which reduces the polarization and enhances the HER materials stability. The core issue is to suppress acid-base neutralization. The positive ions in quaternary ammonium base have larger ion radius than potassium ion which is beneficial to hinder ions permeability. Polybenzimidazole membranes were selected due to its stability for acidic and alkaline solution. In this paper, the relationship between ion species, concentration and diffusion are analyzes in detail. The performance and stability of membranes are discussed.

基金项目:
国家自然科学基金(项目批准号:21776154)。中国博士后科学基金(项目批准号:2017M610913)

作者简介:
第一作者简介:刘帅(1987-),男,籍贯:山东淄博,职称:博士后,研究方向:离子分离膜,E-mail:liushuai99@mail.tsinghua.edu.cn 通讯作者: 王保国 教授,E-mail:bgwang@tsinghua.edu.cn

参考文献:
 [1] Tachibana, Y.; Vayssieres, L.; Durrant, J. R., Artificial photosynthesis for solar water-splitting[J]. Nat Photonics, 2012, 6 (8):511-518.
[2] Reece, S. Y.; Hamel, J. A.; Sung, K., et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts[J]. Science, 2011, 334 (6056):645-648.
[3] Ursua, A.; Gandia, L. M.; Sanchis, P., Hydrogen production from water electrolysis: current status and future trends[J]. P IEEE, 2012, 100 (2):410-426.
[4] Gandía, L. M.; Oroz, R.; Ursúa, A., et al. Renewable hydrogen production: performance of an alkaline water electrolyzer working under emulated wind conditions[J]. Energy Fuel, 2007, 21 (3), 1699-1706.
[5] Barbir, F., PEM electrolysis for production of hydrogen from renewable energy sources[J]. Sol Energy, 2005, 78 (5):661-669.
[6] 张开悦; 刘伟华; 陈晖,等. 碱性电解水析氢电极的研究进展[J]. 化工进展, 2015, 34 (10), 3680-3687.
[7] Dincer, I.; Acar, C., Review and evaluation of hydrogen production methods for better sustainability[J]. Int J Hydrogen Energy, 2015, 40 (34):11094-11111.
[8] Grigoriev, S.; Porembsky, V.; Fateev, V., Pure hydrogen production by PEM electrolysis for hydrogen energy[J]. Int J Hydrogen Energy, 2006, 31 (2):171-175.
[9] Zeng, K.; Zhang, D., Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Prog Energ Combust, 2010, 36 (3):307-326.
[10] 于娇娇; 苏伟; 孙艳, 水制氢技术研究进展[J]. 化学工业与工程, 2012, 29 (5), 58-63.
[11] Raj, I. A.; Vasu, K., Transition metal-based cathodes for hydrogen evolution in alkaline solution: electrocatalysis on nickel-based ternary electrolytic codeposits[J]. J Appl Electrochem, 1992, 22 (5):471-477.
[12] Hoor, F. S.; Tharamani, C.; Ahmed, M. , et al. Electrochemical synthesis of Fe–Mo and Fe–Mo–Pt alloys and their electrocatalytic activity for methanol oxidation[J]. J Power Sources 2007, 167 (1):18-24.
[13] Shan, Z.; Liu, Y.; Chen, Z., et al. Amorphous Ni–S–Mn alloy as hydrogen evolution reaction cathode in alkaline medium[J]. Int J Hydrogen Energy, 2008, 33 (1):28-33.
[14] Zheng, Z.; Li, N.; Wang, C.-Q., et al. Electrochemical synthesis of Ni–S/CeO2 composite electrodes for hydrogen evolution reaction[J]. J Power Sources 2013, 230:10-14.
[15] Solmaz, R.; Döner, A.; Karda?, G., Preparation, characterization and application of alkaline leached CuNiZn ternary coatings for long-term electrolysis in alkaline solution[J]. Int J Hydrogen Energy, 2010, 35 (19):10045-10049.
[16] McDonald, M. B.; Ardo, S.; Lewis, N. S., et al. Use of Bipolar Membranes for Maintaining Steady‐State pH Gradients in Membrane‐Supported, Solar‐Driven Water Splitting[J]. ChemSusChem, 2014, 7 (11):3021-3027.
[17] Simons, R., Preparation of a high performance bipolar membrane[J]. J Membr Sci, 1993, 78 (1):13-23.
[18] Strathmann, H., Electrodialysis, a mature technology with a multitude of new applications[J]. Desalination, 2010, 264 (3):268-288.
[19] Mafé, S.; Ram??rez, P.; Alcaraz, A., Electric field-assisted proton transfer and water dissociation at the junction of a fixed-charge bipolar membrane[J]. Chem Phys Lett, 1998, 294 (4):406-412.
[20] 林小城. 面向碱性燃料电池应用的阴离子交换膜的制备和表征[D]. 中国科学技术大学, 2013.
[21] Iojoiu, C.; Chabert, F.; Maréchal, M., et al. From polymer chemistry to membrane elaboration: A global approach of fuel cell polymeric electrolytes[J]. J Power Sources, 2006, 153 (2):198-209.
[22] Cope, A. C.; Mehta, A. S., Mechanism of the Hofmann elimination reaction: an ylide intermediate in the pyrolysis of a highly branched quaternary hydroxide[J]. J Am Chem Soc, 1963, 85 (13):1949-1952.
[23] Chempath, S.; Boncella, J. M.; Pratt, L. R., et al. Density functional theory study of degradation of tetraalkylammonium hydroxides[J]. J Phys Chem C, 2010, 114 (27):11977-11983.
[24] Chempath, S.; Einsla, B. R.; Pratt, L. R., et al. Mechanism of tetraalkylammonium headgroup degradation in alkaline fuel cell membranes[J]. J Phys Chem C, 2008, 112 (9):3179-3182.
[25] Xing, B.; Savadogo, O., The effect of acid doping on the conductivity of polybenzimidazole (PBI) [J]. J New Mat Electr Sys, 1999, 2 (2):95-102.
[26] Glipa, X.; Bonnet, B.; Mula, B., et al. Investigation of the conduction properties of phosphoric and sulfuric acid doped polybenzimidazole[J]. J Mater Chem, 1999, 9 (12):3045-3049.
[27] Hou, H.; Sun, G.; He, R., et al. Alkali doped polybenzimidazole membrane for alkaline direct methanol fuel cell[J]. Int J Hydrogen Energy, 2008, 33 (23):7172-7176.
[28] Xing, B.; Savadogo, O., Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI) [J]. Electrochem Commun, 2000, 2 (10):697-702.
[29] Li, L.-Y.; Yu, B.-C.; Shih, C.-M., et al. Polybenzimidazole membranes for direct methanol fuel cell: Acid-doped or alkali-doped? [J]. J. Power Sources, 2015, 287 (1):386-395.
[30] 浦鸿汀; 叶盛, 聚苯并咪唑的合成、性能及在燃料电池膜材料中的应用[J]. 高分子通报, 2006, (2): 9-17.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-80492417/010-80485372 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号