具有微米级内外径CTA中空纤维膜制备与表征
作者:魏永明,吴荣荣,许振良,许海涛
单位: (化学工程联合国家重点实验室,华东理工大学 化学工程研究所, 膜科学与工程研发中心,上海 200237)
关键词: 三醋酸纤维素; 中空纤维膜; 干湿法; 微米级内外径
分类号:
出版年,卷(期):页码: 2018,38(5):8-14

摘要:
 本文利用干湿法通过改变纺膜条件来调控中空纤维膜尺寸制备具有微米级内外径三醋酸纤维素(CTA)中空纤维膜。结果表明:中空纤维膜的内外径随铸膜液流速和芯液流速的增加而增加,随收丝速度的增加而减小;内外径随空气段高度的增大而略微减小。其中,铸膜液和芯液流速对膜的尺寸影响最为显著。此外,考察了这些因素对膜微观结构及纯水通量性能的影响,结果表明,本研究中这些因素对膜结构的影响较小,所有的膜都具有海绵状孔;纯水通量随着铸膜液和芯液流速的增加而显著增加,随空气段高度和收丝速度的增加而稍有增加。
 Cellulose triacetate (CTA) hollow fiber membrane with micron-sized inner and outer diameters was prepared using dry-wet spinning method by changing fabrication parameters to control the dimension of hollow fiber membranes. The results show that the inner and outer diameter of the hollow fiber membranes increased with the increase of dope and bore flow rate and decrease with the increase of take-up speed. The inner and outer diameter decreased slightly with the increase of air gap distance. The influence of dope and bore flow rate on membrane diameters was most significant among all the parameters. Besides, the effect of these factors on morphology and pure water flux of hollow fiber membranes was investigated. The results showed that morphology of membranes in this study is insensitive to these factors and all prepared membranes have spongy-like structure. Pure water flux of membranes increased obviously with the increase of dope and bore flow rate but increased slightly with the increase of take-up speed and air gap distance.

基金项目:
国家科技支撑计划(2014BAB07B01和2015BAB09B01);中国工程院咨询项目(2017-XZ-08-04-02)

作者简介:
第一作者简介:魏永明(1977-),男,山东潍坊市人,博士,副教授,从事分离膜微观结构调控研究,E-mail:ymwei@ecust.edu.cn,电话:13311998720;*共同第一作者:吴荣荣(1993-),女,河南省濮阳市人,硕士生,研究方向为膜色谱,Email:m15300868632@163.com,电话:15300868632。

参考文献:
 [1] PETRULIS D. Fundamental study of the effect of the fiber wall thickness and inner diameter on the structure of polyamide and polypropylene hollow fibers [J]. J Appl Polym Sci, 2004, 92(3): 2017-2022. 
[2] CHANG S, FANE A G. The effect of fibre diameter on filtration and flux distribution - Relevance to submerged hollow fibre modules [J]. J Membr Sci, 2001, 184(2): 221-231.
[3] MERCADO-PAGáN Á E, KANG Y, FINDLAY M W, et al. Development and evaluation of elastomeric hollow fiber membranes as small diameter vascular graft substitutes [J]. Mater Sci Eng C, 2015, 49:541-548.
[4] RONCO C, BRENDOLAN A, LUPI A, et al. Effects of a reduced inner diameter of hollow fibers in hemodialyzers [J]. Kidney Int, 2000, 58(2): 809-817.
[5]  Na P, Tai S C. The effects of spinneret dimension and hollow fiber dimension on gas separation performance of ultra-thin defect-free Torlon ®;, hollow fiber membranes[J]. Journal of Membrane Science, 2008, 310(1):455-465.
[6] ISMAIL A F, MUSTAFFAR M I, ILLIAS R M, et al. Effect of dope extrusion rate on morphology and performance of hollow fibers membrane for ultrafiltration [J]. Sep Purif Technol, 2006, 49(1): 10-19.
[7] QIN J, CHUNG T S. Effect of dope flow rate on the morphology, separation performance, thermal and mechanical properties of ultrafiltration hollow fibre membranes [J]. J Membr Sci, 1999, 157(1): 35-51.
[8] TANG C Y, CHEN W, CHEN W Q, et al. Effect of solution extrusion rate on morphology and performance of polyvinylidene fluoride hollow fiber membranes using polyvinyl pyrrolidone as an additive [J]. Chin J Polym Sci (Engl Ed), 2010, 28(4): 527-535.
[9] BELTRAN-LOPEZ J F, SAZATORNIL M, PALACIOS E, et al. Application of simulations to thermodynamic properties of materials for magnetic refrigeration: A calorimetric approach to material’s magnetocaloric parameters [J]. J Therm Anal Calor, 2016, 125(2): 579-583.
[10] KIM J H, PARK Y I, JEGAL J, et al. The effects of spinning conditions on the structure formation and the dimension of the hollow‐fiber membranes and their relationship with the permeability in dry–wet spinning technology [J]. J Appl Polym Sci, 1995, 57(13): 1637-44.
[11] TANG Y, LI N, LIU A, et al. Effect of spinning conditions on the structure and performance of hydrophobic PVDF hollow fiber membranes for membrane distillation [J]. Desalination, 2012, 287:326-39.
[12] CHUNG T S, XU Z L, LIN W. Fundamental Understanding of the Effect of Air-Gap Distance on the Fabrication of Hollow Fiber Membranes [J]. J Appl Polym Sci, 1999, 72(3): 379-95.
[13] ZHANG X, WEN Y, YANG Y, et al. Effect of air-gap distance on the formation and characterization of hollow Polyacrylonitrile (PAN) nascent fibers [J]. J Macromol Sci Part B Phys, 2008, 47(6): 1039-1049.
[14] CHOU W L, YANG M C. Effect of take-up speed on physical properties and permeation performance of cellulose acetate hollow fibers [J]. J Membr Sci, 2005, 250(1-2): 259-67.
[15] MANSUR S, OTHMAN M H D, ISMAIL A F, et al. Investigation on the effect of spinning conditions on the properties of hollow fiber membrane for hemodialysis application[J]. J Therm Anal Calor, 2016, 133(30):1-5.
[16] TANG C Y, CHEN W, CHEN W Q, et al. Effect of solution extrusion rate on morphology and performance of polyvinylidene fluoride hollow fiber membranes using polyvinyl pyrrolidone as an additive [J]. 高分子科学(英文版), 2010, 28(4):527-535.
[17] ISMAIL A F, IBRAHIM S M, NASRI N S B. Effects of dope extrusion rate on the morphology and gas separation performance of asymmetric polysulfone hollow fiber membranes for O2/N2 separation[J]. Songklanakarin J Sci & Tech, 2002, 24(Suppl.).
[18] WANG Z, WEI Y M, Xu Z L, et al. Preparation, characterization and solvent resistance of γ-Al2O3/α-Al2O3, inorganic hollow fiber nanofiltration membrane[J]. J Membr Sci, 2016, 503:69-80.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-80492417/010-80485372 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号