SiO2-PWA/PVDF杂化阳离子交换膜的制备及性能研究
作者:张亚涛,王三反,周键,张少博
单位: (1.兰州交通大学环境与市政工程学院,甘肃 兰州 730070;2.寒旱地区水资源综合利用教育部工程中心,甘肃 兰州 730070)
关键词: 膜法钴电积;SiO2-PWA/PVDF杂化膜;氯离子阻挡性能;耐酸耐氧化性能;氯离子泄漏率
分类号: TQ050.4+25
出版年,卷(期):页码: 2018,38(5):62-68

摘要:
 膜法钴电积工艺中使用的阳离子交换膜需要有很高的氯离子阻挡性能和耐酸耐氧化性能,针对这一问题,采用共混热压法制备出了二氧化硅固定磷钨酸的聚偏氟乙烯(SiO2-PWA/PVDF)杂化阳离子交换膜。实验以电解时膜的氯离子泄漏率为评价指标,研究了膜的氯离子阻挡性能和耐酸耐氧化性能,并使用SEM,FTIR对膜的微观形貌和功能基团进行表征。结果表明,在TEOS与PWA的摩尔比为5:1,SiO2-PWA添加量为20 %,热压温度为180 ℃的情况下,制备出的杂化阳离子交换膜性能最佳,氯离子泄漏率为7.5 %,耐酸耐氧化性能相对较好,具有应用于膜法钴电积工艺的潜力。
 The cation exchange membranes for cobalt electrowinning usage need to have excellent barrier property to chloride ion, and high acid and oxidation resistance.To address this problem,polyvinylidene hybrid cation exchange membrane of silica immobilized phosphotungstic acid(SiO2-PWA/PVDF) was prepared by hot-pressing method . The leakage rate of chloride ion was used as the evaluation index to study the chloride ion barrier property and acid resistance and oxidation resistance of the membrane , and the surface morphology and functional group of the membrane were characterized by SEM and FTIR.When the molar ratio of TEOS to PWA was 5: 1, the additive amount of SiO2-PWA was 20% and the hot pressing temperature was 180 ℃, the hybrid cation exchange membrane has the best performances. The leakage rate of chlorine ion was 7.5, and the acid and oxidation resistance was relatively good.  The hybrid cation exchange membrane has the potential to be applied to the cobalt electrowinning by membrane .

基金项目:
国家科技支撑计划项目(2015BAE04B01);国家自然科学基金项目(21466019);甘肃省省青年科技基金计划(17JR5RA088);兰州交通大学优秀平台基金Lzitu(201606)支持

作者简介:
第一作者简介:张亚涛(1991-),男,甘肃庆阳市人,兰州交通大学硕士研究生,主要研究方向为:离子交换膜的制备及改性,联系电话:18119342551,E-mail:1296751183@qq.com。 通讯作者:,E-mail:Sfwang1612@163.com 。

参考文献:
 [1]王伟红, 邢家悟. 离子交换膜技术在氯碱行业的应用与发展[J]. 膜科学与技术, 2002, 22(6):54-57.
[2]张永明, 唐军桐, 袁望章. 燃料电池全氟磺酸质子交换膜研究进展[J]. 膜科学与技术, 2011, 76-85.
[3]张梅玲, 蔚东升, 顾国锋,等. 离子膜电解去除味精废水中氨氮的研究[J]. 膜科学与技术, 2007, 27(2):61-65.
[4]周键, 王三反, 宋小三. 双膜三室电解槽中电沉积金属钴[J]. 中国有色金属学报.2016, 26(6):1706-1713.
[5]王三反, 周键, 王挺,等. 一种新型膜法金属氯化物电积精炼生产方法: CN, CN102839389A[P]. 2012.
[6] Sakata K, Hirayama K, Katayama S, et al. Development of Hydrocarbon Ion Exchange Membrane with High Chemical Stability[J]. J Ion Exch, 2010, 18. 
31(3):76-85.
[7]Tang H, Shen P, Jiang S P, et al. A degradation study of Nafion proton exchange membrane of PEM fuel cells[J]. Journal of Power Sources, 2007, 170(1):85-92.
[8]Pandey J, Mir F Q, Shukla A. Synthesis of silica immobilized phosphotungstic acid (Si-PWA)-poly(vinyl alcohol) (PVA) composite ion-exchange membrane for direct methanol fuel cell[J]. International Journal of Hydrogen Energy, 2014, 39(17):9473-9481.
[9]黄全江, 南君, 王三反,等. 苯磺酸甜菜碱表面改性阳离子交换膜[J]. 材料导报, 2018(2):203-206.
[10]周键, 王三反, 宋小三,等. 双膜三室电解槽中电沉积钴的离子传输[J]. 中国有色金属学报, 2016, 26(11):2426-2432.
[11]Seepana M M, Pandey J, Shukla A. Synthesis and characterization of PWA based inorganic ion-exchange membrane[J]. Separation & Purification Technology, 2012, 98(98):193-198.
[12] Kim D S, Park H B, Ji W R, et al. Preparation and characterization of crosslinked PVA/SiO 2, hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications[J]. Journal of Membrane Science, 2004, 240(1):37-48.
[13] Tong B, Hossain M M, Yang Z, et al. Development of heterogeneous cation exchange membranes using functional polymer powders for desalination applications[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67:435-442.
[14]  Pal S, Ghatak S K, De S, et al. Evaluation of surface roughness of a plasma treated polymeric membrane by wavelet analysis and quantification of its enhanced performance[J]. Applied Surface Science, 2008, 255(5):2504-2511.
[15] Hui S Y, Kuwabara M, Hao S Z, et al. One-step synthesis of mesoporous PWA/SiO 2, composite materials using triblock copolymer templates[J]. Journal of Materials Science, 2004, 39(7):2341-2347.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-80492417/010-80485372 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号