Ti3C2Tx-MXene掺杂薄层复合纳滤膜的制备及其性能研究
作者:张弦,吴铭榜,杨熙,杨静,徐志康
单位: 浙江省吸附分离材料与应用技术重点实验室,浙江大学高分子科学与工程学系,杭州 310027
关键词: 纳滤膜;MXene;界面聚合;聚酰胺
出版年,卷(期):页码: 2020,40(1):8-15

摘要:
通过氟化锂/稀盐酸刻蚀钛碳化铝合成单层二碳化三钛(Ti3C2Tx)纳米片,进而采用界面聚合方法制备一种MXene (Ti3C2Tx)掺杂的聚酰胺(PA)薄层复合纳滤膜,并对其渗透分离性能进行研究。以哌嗪(PIP)、Ti3C2Tx混合分散液作为水相、均苯三甲酰氯(TMC)的正己烷溶液作为有机相,在聚醚砜(PES)超滤膜支撑层上进行界面聚合,获得Ti3C2Tx掺杂的薄层复合纳滤膜。对Ti3C2Tx掺杂的薄层复合纳滤膜的微观结构、化学成分、表面润湿性、表面电荷特征进行详细的测试与表征,并考察了Ti3C2Tx掺杂量对复合纳滤膜表面微观结构和分离性能的影响。结果表明,聚酰胺皮层中Ti3C2Tx的掺杂增加了膜表面的粗糙度,降低了聚酰胺皮层的厚度,提高了膜表面的亲水性及负电性,并在硫酸钠盐截留率保持98%的同时提高了纳滤膜的纯水通量。
 In this work, the Ti3C2Tx-doped thin film nanocomposite (TFN) membranes were prepared through interfacial polymerization used trimesoyl chloride (TMC) as organic phase monomer and Ti3C2Tx dispersion in piperazine (PIP) as aqueous phase monomer on the polyether sulfone (PES) UF substrates. It can be found that the roughness, hydrophilicity and electronegativity were greatly improved compared with that of TFC membrane without Ti3C2Tx, in addition, the water flux of the TFN membrane was improved by 25% resulting from the reduced skin layer thickness and the improved hydrophilicity while the rejection for Na2SO4 was remaining at 98%.
第一作者简介:张弦(1996-),女,浙江宁波人,在读硕博连读生,研究方向为聚合物分离膜及其表界面工程. *通讯作者,E-mail:xuzk@zju.edu.cn

参考文献:
[1] Petersen R J. Composite reverse osmosis and nanofiltration membranes[J]. J Membr Sci, 1993, 83(1): 81-150.
[2] Hilal N, Al-Zoubi H, Darwish N A, et al. A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modelling, and atomic force microscopy[J]. Desalination, 2004, 170(3): 281-308.
[3] Yang X, Du Y, Zhang X, et al. Nanofiltration membrane with a mussel-inspired interlayer for improved permeation performance[J]. Langmuir, 2017, 33(9): 2318-2324.
[4] Coronell O, Marinas B J, Cahill D G, et al. Depth heterogeneity of fully aromatic polyamide active layers in reverse osmosis and nanofiltration membranes[J]. Environ Sci Technol, 2011, 45(10): 4513-4520.
[5] Jeong B H, Hoek E M V, Yan Y S, et al. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes[J]. J Membr Sci, 2007, 294(1-2): 1-7.
[6] Ji Y L, Qian W J, Yu Y W, et al. Recent developments in nanofiltration membranes based on nanomaterials[J]. Chin J Chem Eng, 2017, 25(11): 1639-1652.
[7] Li S X, Li C, Song X J, et al. Graphene quantum dots-doped thin film nanocomposite polyimide membranes with enhanced solvent resistance for solvent-resistant nanofiltration[J]. ACS Appl Mater Interfaces, 2019, 11(6): 6527-6540. 
[8] Xu S J, Li F, Su B W, et al. Novel graphene quantum dots (GQDs) -incorporated thin film composite (TFC) membranes for forward osmosis (FO) desalination[J]. Desalination, 2019, 451: 219-230.
[9] Wu H Q, Tang B B, Wu P Y. Optimization, characterization and nanofiltration properties test of MWNTs/polyester thin film nanocomposite membrane[J]. J Membr Sci, 2013, 428, 425-433.
[10] Zarrabi N, Yekavalangi M E, Vatanpour V, et al. Improvement in desalination performance of thin film nanocomposite nanofiltration membrane using amine-functionalized multiwalled carbon nanotube[J]. Desalination, 2016, 394: 83-90.
[11] Bano S, Mahmood A, Kim S J, et al. Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties[J]. J Mater Chem A, 2015, 3(5): 2065-2071. 
[12] Xia S J, Yao L J, Zhao Y, et al. Preparation of graphene oxide modified polyamide thin film composite membranes with improved hydrophilicity for natural organic matter removal[J]. J Chem Eng J, 2015, 280: 720-727.
[13] Sorribas S, Gorgojo P, Tellez C, et al. High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration[J]. J Am Chem Soc, 2013, 135(40): 15201-15208.
[14] Van Goethem C, Verbeke R, Hermans S, et al. Controlled positioning of MOFs in interfacially polymerized thin film nanocomposites[J]. J Membr Sci, 2016, 4(42): 16368-16376.
[15] Hu D, Xu Z L, Wei Y M. A high performance silica-fluoropolyamide nanofiltration membrane prepared by interfacial polymerization[J]. Sep Purif Technol, 2013, 110: 31-38.
[16] Lee H S, Im S J, Kim J H, et al. Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles[J]. Desalination, 2008, 219(1-3): 48-56.
[17] Mollahosseini A, Rahimpour A. A new concept in polymeric thin-film composite nanofiltration membranes with antibacterial properties[J]. Biofouling, 2013, 29(5): 537-548.
[18] Wu H J, Tang B B, Wu Peiyi. Optimization, characterization and nanofiltration properties test of MWNTs/polyester thin film nanocomposite membrane[J]. J Membr Sci, 2013, 428: 425-433.
[19] Song J J, Su D W, Xie X Q, et al. Immobilizing polysulfides with MXene-functionalized separator for stable lithium-sulfur batteries[J]. ACS Appl Mater Interfaces. 2016, 8(43): 29427-29433.
[20] Ran J R, Gao G P, Li F T, et al. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production[J]. Nat Commun, 2017, 8: 13907.
[21] Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides[J]. ACS nano, 2012, 6(2): 1322-1331.
[22] Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Adv Mater, 2011, 23(37): 4248-4253. 
[23] Naguib M, Mochalin V N, Barsoum M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Adv Mater, 2014, 26(7): 992-1005. 
[24] Ying Y L, Liu Y, Wang X Y, et al. Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(Ⅵ) from water[J]. ACS Appl Mater Interfaces, 2015, 7(3): 1795-1803.
[25] Wu M B, Lv Y, Yang H C, et al. Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances[J]. J Membr Sci, 2016, 515: 238-244.

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号