NaA分子筛合成残余物掺杂制备SiC膜支撑体
作者:魏巍,徐超男,韩峰,仲兆祥,邢卫红
单位: 1. 南京工业大学,南京 210009;2. 南京膜材料产业技术研究院有限公司,南京 211800
关键词: 碳化硅、气体净化、低温烧结、NaA分子筛、残余物
出版年,卷(期):页码: 2020,40(1):123-130

摘要:
 本文选用平均粒径100 μm碳化硅为主要原料粉体,NaA分子筛合成废液中提取的粉体(主要成分为NaA分子筛和微量硅铝钠化合物)为烧结助剂,采用挤出法进行生坯成型,最后通过原位烧结技术制备高温气体净化用的管式碳化硅膜支撑体(外径60 mm,内径40 mm,长1500 mm)。研究结果表明,烧结助剂的最佳含量为3 wt.%,随着烧成温度的升高,碳化硅膜支撑体孔隙率逐渐减小,平均孔径也随之增加。当烧成温度达到1150 ℃时,膜支撑体平均孔径为30.92 μm,气体通量为99.32 m3·m-2·h-1·kPa-1,抗弯强度达到29.50 MPa,同时也表现出优异的抗热震性能和耐酸腐蚀性能,为高温气体净化碳化硅膜的低成本、绿色化制备以及应用研究提供了理论依据。
 In this paper, silicon carbid (dx=100μm)was used as the main raw material powder and the synthesis residues of NaA zeolite extracted from the waste liquid was used as sintering aid. Firstly, the green body was formed by extrusion, then the in-situ sintering technique was adopted to prepare the large pore size SiC ceramic support tube (Outer diameter is 60 mm, inner diameter is 40 mm, length is 1500 mm). The results showed that the optimum content of the sintering aid is 3 wt.%. As the temperature increases, the porosity of the SiC ceramic support decreases gradually and the average pore diameter increases. When the temperature was 1150 °C, the average pore diameter of the support is 30.92 μm and the distribution is very narrow,the gas flux was 99.32 m3·m-2·h-1·kPa-1and the bending strength reaches a maximum value of 29.50 MPa, while the SiC ceramic support also exhibits excellent thermal shock resistance and acid corrosion resistance,providing a theoretical basis for the low-cost, green preparation and application research of silicon carbide film for hot gas filtration.
第一作者简介:魏巍(1992_),男,江苏镇江,博士研究生,E-mail:18260032217@163.com

参考文献:
 [1] 李世普.特种陶瓷工艺学[M]//武汉: 武汉工业大学出版社, 1990: 337.
[2] 刘维良. 先进陶瓷工艺学[M]//武汉: 武汉理工大学出版社, 2004: 673.
[3] Greil P. Advanced engineering ceramic[J]. Adv Mater, 2002, 14(10):709-716.
[4] Zhu Z, Xiao J, He W, et al. A phase-inversion casting process for preparation of tubular porous alumina ceramic membranes[J]. J. Eur. Ceram. Soc., 2015, 35(11):3187-3194.
[5] 任祥军, 程正勇, 刘杏芹. 陶瓷膜用于气固分离的研究现状和前景[J]. 膜科学与技术, 2005, 25(2): 65-68.
[6] Sharma S D, Dolan M, Ilyushechkin A Y, et al. Recent developments in dry hot gas cleaning processes[J]. Fuel, 2010, 89(4): 817-826.
[7] Fukushima M, Zhou Y, Miyazaki H, et al. Microstructural characterization of porous silicon carbide membrane support with and without alumina additive[J], J. Am. Ceram. Soc., 2006, 89(5): 1523-1529.
[8] 李俊峰, 林红, 李建保等. 高温过滤支撑体用SiC基多孔陶瓷的制备与表征[J], 稀有金属材料与工程, 2009, 38(2): 122-125.
[9] Yang Y, Han F, Xu W Q, et al. Low-temperature sintering of porous silicon carbide ceramic support with SDBS as sintering aid[J]. Ceram. Int., 2017(43):3377-3383.
[10] Wang X, Xie Z P, Huang Y, et al. Gelcasting of silicon carbide based on gelation of sodium alginate[J]. Ceram. Int., 2002, 28(8):865-871.
[11] 鲍崇高, 许飞. 挤出成形法制备多孔SiC陶瓷工艺研究[J]. 稀有金属材料与工程, 2011, 40(S1):604-607.
[12] 付伟峰, 唐竹兴, 王计选. 挤出成型多孔陶瓷的性能及应用[J]. 现代技术陶瓷, 2007, (1):16-19.
[13] Isobe T, Tomita T, Kameshima Y, et al. Preparation and properties of porous alumina ceramics with oriented cylindrical pores produced by an extrusion method[J]. J. Eur. Ceram. Soc., 2006, 26(6):957-960.
[14] Zhou Y, Fukushima M, Miyazaki H, et al. Preparation and characterization of tubular porous silicon carbide membrane supports[J]. J. Membr. Sci., 2011, 369(1-2): 112-118.
[15] Schaafhausen S, Yazhenskikh E, Walch A, et al. Corrosion of alumina and mullite hot gas filter candles in gasification environment[J]. J. Eur. Ceram. Soc., 2013, 33:3301-3312.
[16] Schaafhausen S, Yazhenskikh E, Heidenreich S, et al. Corrosion of silicon carbide hot gas filter candles in gasification environment[J].J. Eur. Ceram. Soc., 2014, 34:575-588.
[17] Chae S H, Kim Y W, Song I H, et al. Porosity control of porous silicon carbide ceramics[J]. J. Eur. Ceram. Soc., 2009, 29(13):2867-2872.
[18] Liu C Y, Tuan W H, Chen S C. Preparation of porous SiC ceramics for thermal dissipation purposes[J]. Ceram. Int., 2015, 41(3):4564-4568.
[19] Hotta M, Kita H, Matsuura H, et al. Pore-size control in porous SiC ceramics prepared by spark plasma sintering[J]. J. Ceram. Soc. Jpn., 2012, 120 (1402):243-247.
[20] Lin P K, Tsai D S. Preparation and analysis of a silicon carbide composite membrane[J]. J. Am. Ceram. Soc., 1997, 80(2): 365-372.
[21] Fukushima M, Zhou Y, Yoshizawa Y. Fabrication and microstructural characterization of porous SiC membrane supports with Al2O3-Y2O3 additives[J]. J. Membr. Sci., 2009, 339(1): 78-84.
[22] Ding S, Zhu S, Zeng Y, et al. Effect of Y2O3 addition on the properties of reaction-bonded porous SiC ceramics[J]. Ceram. Int., 2006, 32(4):461-466.
[23] Yang Y, Han F, Xu W, et al. Low-temperature sintering of porous silicon carbide ceramic support with SDBS as sintering aid[J]. Ceram. Int., 2017, 43(3):3377-3383.
[24] Fukushima M, Zhou Y, Miyazaki H, et al. Microstructural characterization of porous silicon carbide membrane support with and without alumina additive[J]. J. Am. Ceram. Soc., 2006, 89(5):1523-1529.
[25] Eom J, Kim Y, Raju S. Processing and properties of macroporous silicon carbide ceramics: A review[J]. J.  Asian. Ceram. Soc., 2013, 1(3):220-242.[26] Ohji T, Fukushima M. Macro-porous ceramics: processing and properties[J]. Int. Mater. Rev., 2012, 57(2): 115-131.
[27] Yang Y, Xu W, Zhang F, et al. Preparation of highly stable porous SiC membrane supports with enhanced air purification performance by recycling NaA zeolite residue[J]. J. Membr. Sci., 2017, 541: 500-509.
[28] Pastila P, Helanti V, Nikkia AP, et al. Environmental effects on microstructure and strength of SiC-based hot gas filters[J]. J. Eur. Ceram. Soc., 2001, 21(9):1261-1268.
[29] Herrmann M, Standke G, Höhn S, et al. High-temperature corrosion of silicon carbide ceramics by coal ashes[J]. Ceram. Int., 2014, 40(1):1471-1479.
[30] Dong Y C, Feng X Y, Dong D H, et al. Elaboration and chemical corrosion resistance of tubular macro-porous cordierite ceramic membrane supports[J]. J. Membr. Sci., 2007, 304(1-2): 65-75. 

服务与反馈:
文章下载】【加入收藏

《膜科学与技术》编辑部 地址:北京市朝阳区北三环东路19号蓝星大厦 邮政编码:100029 电话:010-64426130/64433466 传真:010-80485372邮箱:mkxyjs@163.com

京公网安备11011302000819号